
An Improved Hardware
Implementation of the
Quark Hash Function

Shohreh Sharif Mansouri and Elena Dubrova

Department of Electronic Systems
Royal Institute of Technology (KTH), Stockholm

Email:{shsm,dubrova}@kth.se

Overview

• Motivation
• Structure of the Quark hash function
• Techniques to improve implementation
• Experimental results
• Conclusion

2

The Main Goal

 • Improving Quark in terms of Throughput, Area

and Power

• We achieve it by modifying the architecture of

Quark without changing its algorithm

• We succeed to increase the throughput by
34% for U-Quark

3

• Quark is a family of cryptographic sponge functions

• Targets resource-constrained hardware

environments

• Three Quark instances: U- Quark , D-Quark and S-
Quark

• Supports at least 64-bits, 80-bits and 112-bits
security level against most crypto-attacks.

Quark Family of Hash Function

4

Sponge Construction
• A sponge construction goes through three phases:

Initialization
Absorbing phase
Squeezing phase

5
Message bits

block 1 block 2 block 3

Initial value(b bits)

r bits

S(0)
S(1)
S(2)

S(b-1)
S(b-2)

.

.

.

c bits

output output output

 Quark Hardware Structure

6

•The sponge construction can be
implemented serially, with a
single permutation block.

•The permutation block of Quark
is based on shift registers

•It is inspired by:
stream cipher Grain
block cipher KATAN

Output stream (r bits)

Message (r bits)

• Throughput is determined by the critical path,
which is the longest combinational path in the
system.

• Quark ‘s critical:
– Dhn: maximal delay from a flip-flop of one of the

NLFSRs through the h functions to the first flip-flop of
one of the NLFSRs

How to Improve Throughput?

7

Fibonacci-to-Galois transformation of the FSRs

Re-designing H block

• Improves the critical path delay
• Brings no area or power penalty

Fibonacci to Galois Transformation

8

*A Transformation from the Fibonacci to the Galois NLFSRs", E. Dubrova,IEEE Transactions on
Information Theory, 55:11, 2009, pp. 5263-5271

f3=x0 + x1x3 +x1x2
f2=x3
f1=x2
f0=x1

f3=x0 + x1x3
f2=x3 +x0x1
f1=x2
f0=x1

Fibonacci Configuration Galois Configuration

Fibonacci to Galois Transformation*

9

Critical delay=5

2

2 1

1

Critical delay=3

delay=3
delay=3

delay=3

delay=5

f3 = x1x2 + x1x3 + x0
f2 = x3
f1 = x2
f0 = x1

f3 = x1x2 + x0
f2 = x3 + x0x2
f1 = x2
f0 = x1

f3 = x0
f2 = x3 + x0x1 + x0x2
f1 = x2
f0 = x1

Example

10

The transformation from Fibonacci to Galois is not
unique

• Explore the design space to find the best Galois NLFSR
equivalent to a given Fibonacci NLFSR

• Optimal algorithm: synthesize every possible
combination and find the best solution

 Computationally unfeasible - we need a heuristic
approach* F2G:http://web.it.kth.se/~dubrova/fib2gal.html

Fibonacci to Galois Transformation

11

*"An Algorithm for Constructing a Fastest Galois NLFSR Generating a Given Sequence”,
J.-M.,Chabloz, S. Mansouri, E. Dubrova, in Sequences and Their Applications , LNCS
6338, 2010, pp. 41-55

12

0 1 0 0 1 0 1 0 0 1

Not same output stream

Loading
• Sometimes, with the same initial values, Fibonacci and

Galois FSRs may produce different output streams.

Loading

• The Fibonacci FSR and the Galois FSR are
loaded in parallel with the same value

• Update functions of the Galois FSR are
"turned on" one by one

13

14

0 0 1 1

same output stream

Re-designing the Filter Generator

15

xn-1 = x0 + gn-1 + h
xn-2 = xn-1 + gn-2
xn-3 = xn-2 + gn-3
xn-4 = xn-3
...
...
x0 = x1

xn-1 = x0 + gn-1 + hn-1
xn-2 = xn-1 + gn-2 + hn-2
xn-3 = xn-2 + gn-3 + hn-3
xn-4 = xn-3
...
...
x0 = x1

h = x2 + x8 x12 + x13 x20

x2
x7x11

x11x18

Critical path

Possible critical path

Implementation Results for U-Quark

• Throughput improvement: 34%
• Power improvement: 15%
• Area overhead is less than 1%

16

Other Achieved Improvements
• We improved the hardware implementation of

some FSR based stream cipher.
• The best achieved improvements are for Grain-80,

Grain-128 and Grain-128a.

17

Grain-128a* Grain-128** Grain-80** Quark

Freq. 52% 47% 42% 34%

Area -5% 6% 5% -1%

Power 2% 9% 11% 15%

*"An Improved Hardware Implementation of the Grain Stream Cipher", S. Mansouri, E. Dubrova in Euromicro
Conference on Digital System Design (DSD’2010)

** "An Improved Hardware Implementation of the Grain-128a Stream Cipher", S. Mansouri, E. Dubrova , in International
Conference on Information Security and Cryptology (ICISC’2012)

• High throughput improvement
• Limited area/power impact
• Techniques compatible with the standard ASIC

flow
• Some techniques can be applied to other

ciphers

Conclusion

18

Thank You for your attention

Questions?

F2G: http://web.it.kth.se/~dubrova/fib2gal.html

20

0 0 1 1

same output stream
Start wth different initial value

Feedback

	An Improved Hardware Implementation of the�Quark Hash Function�
	Overview
	��The Main Goal��
	���
	Sponge Construction
	� Quark Hardware Structure �
	��How to Improve Throughput?��
	�Fibonacci to Galois Transformation�
	��Fibonacci to Galois Transformation*��
	Example
	��Fibonacci to Galois Transformation��
	Loading
	Loading
	Slide Number 14
	Re-designing the Filter Generator�
	Implementation Results for U-Quark
	Other Achieved Improvements
	��Conclusion��
	Thank You for your attention�
	Slide Number 20

