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Preface

The use of state-of-the-art cryptographic methods on RFID tags opens a new
range of applications for these tags and for cryptography. The aims of the
ECRYPT1 workshop on RFID and Lightweight Crypto are to increase the aware-
ness for cryptographic methods and solutions among RFID developers, and for
the requirements of this heavily constrained environment among cryptographers.

The workshop brings together researchers and developers from industry and
academia, in order to exchange novel ideas and experiences. The scope includes,
but is not limited to, the following topics:

– Applications for RFID tags
– Cryptographic algorithms for constrained environments
– Cryptographic protocols adapted to RFID applications
– Low-power implementations

The workshop program consists of invited talks and contributed presenta-
tions. The workshop proceedings contain the revised articles that were accepted
for presentation.

Thanks go to Vincent Rijmen for serving as program chair. Thanks go to
Phong Nguyen, Christof Paar, Bart Preneel and Matt Robshaw for serving as
program committee.

July 2005 Elisabeth Oswald

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.
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A Scalable, Delegatable Pseudonym Protocol Enabling Ownership

Transfer of RFID Tags

David Molnar, Andrea Soppera, and David Wagner

UC Berkeley, British Telecom Research, UC Berkeley

Abstract. The ability to link two different sightings of the same Radio Frequency Identification
(RFID) tag enables invasions of privacy. The problem is aggravated when an item, and the tag at-
tached to it, changes hands during the course of its lifetime. After such an ownership transfer, the new
owner should be able to read a tag but the old owner should not. We address these issues through an
RFID tag pseudonym protocol. Each time it is queried, an RFID tag emits a different pseudonym using
a pseudo-random function and an increasing counter. Without consent of a special Trusted Center that
shares secrets with the tag, it is infeasible to map the pseudonym to the tag’s real identity. We present
a scheme for RFID pseudonyms that works with legacy, untrusted readers, requires only one message
from tag to reader, and is scalable: we require work only logarithmic in the number of tags for the
Trusted Center to link readings.
Our scheme gives an exponential improvement over the previous pseudonym schemes of Ohkubo, Suzuki,

and Kinoshita, and of Avoine and Oeschlin, which achieve O(N) and O(N
2

3 ), respectively. Our scheme
further allows for delegation, which gives an RFID reader the power to disambiguate a limited number
of pseudonyms without further help from the Trusted Center. Next we show that our approach require
little storage on an RFID tag and a small amount of over the air communication; we give example
parameters for a deployment of one million tags in which each tag need store only 192 bits, make 4
PRF evaluations, and send 112 bits each time it is read.
Keywords: RFID, privacy, pseudonym protocol, cryptography.

1 Introduction

Radio Frequency Identification (RFID) technology holds great promise, but it also raises significant
privacy concerns. The term RFID represents a family of emerging technologies that enable object
identification without physical or visual contact. The main idea is to give a unique identity to every
object by embedding a tag. A tag is a small chip, with an antenna, that stores a unique ID and
other information which can be sent to a reading device. The reading device uses a database to link
the ID with the object information stored in other databases.

The major security issues of these systems can be divided into two classes: threats to the integrity
of the system and threats to the privacy of the user. The first threat is due to the fact that a tag
does not provide any method to prove the claimed identity. In today’s RFID systems, a tag always
replies with the same ID, so it is hard to distinguish between a real and a fake tag. The second
threat is associated with the nature of the tag/reader interaction. Tags can be read remotely and
invisibly by any reader. This leads to unwanted consequences, such as the surreptitious tracking of
objects and people through time and space. For instance, any party could use the RFID tags to
track people’s movements without authorization, since the ability to recognize an RFID tag allows
for tracking items, and by extension, the people associated with them.

The seminal work of Weis, Sarma, Engels and Rivest proposed “hash locks,” a kind of mutual
authentication, as an answer to this problem. Infineon, one of the first producers of enhanced
security RFID chips, incorporates a mutual authentication functionality based on a proprietary
encryption algorithm with 64 bit keys to secure access to memory sectors. This class of tags are
used today in item-level tagging operations that raise privacy concerns, such as library books [10].
Unfortunately mutual authentication cannot be considered the final answer. Mutual authentication



is overkill for many RFID applications, because in most cases we simply want to know the tag’s
identity. Writing to the tag or authenticating other commands from the reader are not necessary.
In many supply chain applications of RFID, a large number of items will pass a reader in a short
amount of time. Even if performing mutual authentication with a single item is fast, authenticating
a reader to dozens of tags at once may be challenging.

We propose a cryptographic scheme that protects privacy while retaining many of the legitimate
benefits of current RFID technology. The main idea is to introduce an RFID pseudonym scheme
and to use a trusted center as a mechanism to delegate access to tag identifiers. Each time the tag
is read, it generates a new “pseudonym” and sends this pseudonym to the reader. This response
is generated using a ’tree of secrets’ stored on the tag. The tree structure allows reader devices
to determine the tag’s identity with logarithmic work. Legacy readers, however, can simply pass
upwards a pseudonym which they do not understand; the mapping from pseudonym to identity can
occur anywhere in the network. Therefore, we do not need to change legacy readers.

Our scheme achieves two properties that are new for RFID protocols, as controlled delegation
and ownership transfer. Delegation is the ability to give a reader the limited-time ability to deter-
mine when it has seen a particular tag. We can use delegation to limit the exposure if an adversary
breaks into the reader; instead of losing the secrets for all tags for all time, we lose only what was
delegated to that particular reader. Delegation also gives us a way to tolerate poor quality network
connections between reader and Trusted Center. We also show how delegation gives us a way for
Alice and Bob, who both trust the same Trusted Center but do not trust each other, to securely
transfer an RFID-tagged item from one to the other. After the transfer, Bob has assurance that
Alice can no longer read the RFID tag on the item, even though she could before. Our methods
for ownership transfer require minimal or no online interaction by the Trusted Center itself.

In short, our scheme leaves the existing infrastructure of readers unchanged, while limiting com-
plexity on the tag to the use of symmetric key cryptography and an increasing counter. “Contactless
smart cards” proposed for United States passports from 2005 will have chips holding at least 64KB
of data, along with optional 3DES based mutual authentication. Tags from Infineon and TAGSYS
provide evidence that symmetric key cryptography is possible on RFID tags. Given these existing
tags, along with recent work by Feldhofer et al. on small implementations of AES, we believe that
our assumptions may be reasonable even for cheap supply chain tags in the near future [3].

2 Towards a Secure RFID Tag Protocol

In this section we outline the key aspects of the protocol that contribute to providing a robust
solution to RFID security and privacy protection.

Pseudonym Scheme We wish to allow authorized readers to identify the RFID tag, while prevent-
ing unauthorized readers from determining anything about the identity of tags they interact with.
Our approach is to build a RFID pseudonym protocol [12]. In our scheme, the RFID tag replies
with a unique pseudonym that changes each time it is queried. The pseudonym is generated based
on some secret key that is stored on the tag and known to authorized readers, so that authorized
readers can identify the tag. However, without that secret, the pseudonym provides no information
about the tag’s identity. In particular, pseudonyms are unlinkable, so that unauthorized readers
will be unable tell if two pseudonyms came from the same tag. In this way, possession of the secret
key controls the ability to link sightings of the same tag.

The tag-reader protocol is very simple: the reader interrogates the tag, and the tag responds
with its current pseudonym. Our use of pseudonyms allows the scheme to be compatible with legacy
readers, because the reader does not need to know anything about the way that pseudonyms are
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Fig. 1. The Trusted Center delegates access to two different Readers.

generated. Instead, the reader can provide the pseudonym it received to some other entity with the
appropriate keys, and that other entity can recover the tag’s identity from the pseudonym.

Privacy Control In many settings, we may wish to have a single party manage access to many tags.
Thus, we assume the presence of a central trusted entity, which we call the Trusted Center(TC).
When a tag is enrolled into the system, it is loaded with a secret key generated for it by the TC.
The TC keeps a database listing for each tag with the secret key that was provided to that tag and
any data that is to be associated with that tag (such as its identity, or access policy). Given any
pseudonym from such a tag, the TC can determine the identity of the tag using the secret keys
stored in its database.

Note that this also provides a simple way to delegate access to specific readers. In the future, a
RFID infrastructure might consist of thousands or even millions of RFID readers deployed across
the planet, and we need a way for legitimate readers to be allowed to read the tag. In a naive
implementation, a TC for the tag would give a copy of the tag’s secret key to each reader that
is authorized to read the tag. However, this form of delegation is too coarse-grained, because the
reader then permanently receives the ability to identify this tag for all time. We may not wish to
place this much trust in every RFID reader that ever encounters the tag; the challenge is to provide
controlled delegation, where a reader’s ability to read a tag can be limited to a particular time
period.

Controlled Delegation If readers are online, one simple approach is to have the reader simply
act as a dumb relay, passing on the pseudonym from the tag to Trusted Center and letting the TC
reply with the identity of the tag. In such a scheme, the TC can indeed authenticate the reader
and check the privacy policy of the tag before responding to this reader’s request. If a reader Alice
wishes to determine a tag’s ID, she must ask the TC. The TC can then decide whether Alice is
allowed to see this information based on the tag privacy policy stored in the database. However, one
limitation of this approach is that it requires a costly interaction between the reader and TC every
time a tag is read. Because today’s readers may repeatedly broadcast queries to all tags within
range at a rate of 50 times per second or so, the burden on the TC and the database may be very
high: if there are 10 tags within range, we require 500 round-trip interactions per second with the
TC, multiplied times the number of readers. We instead focus on the problem of offline delegation.

In our scheme, the TC can compute a time-limited secret that only allows ability to disambiguate
pseudonyms for a particular tag for a limited number of times. In particular, the TC computes a
secret that allow to recognize the next q pseudonyms from this tag, where q is arbitrary and can
be specified by the privacy policy. This secret can be communicated to Alice, the reader, through
any channel, and thereafter the reader does not need to interact with the TC in any way.

In Figure 1 we show a diagram of how delegation works in our scheme with different RFID
readers and the Trusted Center. Delegation is helpful for cases where readers have intermittent or



low-bandwidth connectivity. When a reader first sees a tag it is unable to recognize, the reader can
send the pseudonym it received to the TC. If this reader is authorized this tag, the TC can return
not only the tag’s identity but also a secret that allows reading the tag for a limited time (say,
for 1000 queries). Because tags typically repeatedly query their environment many times a second,
this allows any arbitrary number of subsquent queries to be disambiguated locally at the reader,
without requiring further interaction with the TC (until the query limit is exceeded). Thus, our
scheme can still be used with online readers, and the ability to exploit the locality in tag sightings
can be used to greatly improve the performance.

Ownership Transfer A related problem to delegation is that of ownership transfer, when Alice
gives an RFID-tagged item to Bob. After the transfer of ownership, Bob should be able to read the
item but Alice should not. Pseudonyms allow us to cleanly deal with ownership transfer from Alice
to Bob. If Alice has not been delegated the ability to disambiguate pseudonyms, no further work
is needed: the TC simply denies Alice’s requests to disambiguate pseudonyms after Bob registers
his ownership of the item. If Alice has been delegated linking ability, we have two methods for
ensuring Alice can no longer link a tag after it is passed to Bob. First, a method we call soft killing,
and second a method for securely incrementing a tag’s leaf counter. We describe both methods in
more detail in Section 6. Previous work on ownership transfer focused on a “recoding” technique
with writeable RFID tags, in which a tag is overwritten with a new identifier that does not change
between recodings. Therefore the RFID tag is still vulnerable to tracking and hotlisting until it
is recoded [9]. Recoding also introduces the problem of managing secure access to the recoding
operation in order to prevent other parties rewriting the tag.

Scalable Lookup A major technical challenge in the design of such systems is how to make
them scalable to a large number of tags. Consider a TC with a database of N tags that receives
a pseudonym to be disambiguated. Naively, one might check, for each of the N tags known to the
TC, whether this pseudonym could have been generated by that tag. This results in O(N) work if
the number of potential pseudonyms for each tag is limited. Ohkubo et al. introduce a pseudonym
scheme for RFID that works in this manner [11].

To improve scalability Ohkubo et al. propose storing the expected next output of each RFID
tag as an optimization, but this cannot be kept up to date unless the trusted authority is online
for every tag read. Avoine and Oeschlin propose a time-space tradeoff technique that improves the
complexity of the Ohkubo et al. protocol to O(N

2
3 ) time with a table of size O(N

2
3 ), but their

protocol does not support delegation as ours does [2].

Instead, we design a scheme with logarithmic workload: in our protocol, the TC needs only do
O(log N) work to disambiguate a pseudonym. The logarithmic complexity does not apply to readers
who have been delegated access to a subset of tags: a reader can disambiguate each pseudonym in
O(D) time, where D is the number of tags delegated to the reader. In practice we expect D will be
small compared to the total number of tags; for example, D might be the number of tags in a single
shipment of goods. Fortunately, since there is a great deal of locality in tag-reader interactions,
most readers will only be associated with a small number of tags, so we expect this performance
level to be more than adequate in practice. In Figure 2 we show a comparison to previous RFID
privacy schemes.

3 Protocol Overview

The main idea of our scheme is to store a “tree of secrets” on the RFID tag. Our solution requires a
pseudo-random function and a non-volatile counter on the RFID tag. Given recent results on AES



Scheme TReader SReader TTC STC # Msg Comm Delegation?

OSK [11] O(N) O(N) NA NA 1 O(1) No

AO [2] O(N
2

3 ) O(N
2

3 ) NA NA 1 O(1) No
MW [10] O(log N) O(1) NA NA O(log N) O(log N) No

Basic Scheme O(D) O(D) O(log N) O(2d1) 1 O(log N) Yes
Optimized Scheme O(D) O(D) O(log N) O(1) 1 O(log N) Yes

Fig. 2. Comparison to previous RFID privacy schemes. Here TTC and STC stand for the time and storage requirements
of the Trusted Center, with the Reader requirements marked similarly. N is the total number of tags in the system,
d1 is the depth of the Trusted Center’s tree, and D is the number of tags delegated to a particular reader. In practice,
we expect D ≪ N . The Optimized Scheme uses a PRF to generate the TC’s tree of secrets and truncates the tag
outputs, as described in Section 7.

implementation for RFID by Feldhofer et al., this appears reasonable for a large class of tags [3].
Each tag keeps a counter, which is incremented on each read. The counter stores the index of the
next leaf of the tree to use. The path from root to leaf, combined with a random nonce, determines
the tag’s response to an RFID reader. After each response, the tag “updates” itself and its key
material to the next leaf in the tree. A part of the tree from the root to a given depth (d1) is shared
between the Trusted Center and the tag alone. This shared key material allows the TC to determine
the tag’s identity with logarithmic complexity. Molnar and Wagner [10] showed how to use a “tree
scheme” to reduce reader work in private mutual authentication from linear to logarithmic in the
number of tags. Unfortunately, the scheme requires at least 3 and possibly as many as O(log N)
rounds of communication between tag and reader, while we achieve one message from tag to reader.
Further, their work does not support delegation, nor does it work with legacy readers. Our work
uses a similar tree construction to achieve logarithmic work, but applies the scheme to a different
problem, that of RFID pseudonyms.

Secrets from the tree below depth (d1) may be given by the TC to an RFID reader. Because the
tag evolves its key with each step, this delegated key material will “expire” after a certain number
of tag reads. For simplicity, we will describe our protocol as if a random number generator exists on
the RFID tag. In some RFID technologies, this may not be realistic; therefore we show in Section 7
how to replace this with an increasing counter. We will also limit the description to a binary tree of
secrets, but in practice we will want to pick a tree with a high branching factor to make a tradeoff
between reader work and tag communication. Again, we treat this in more depth in Section 7.

4 Notations and Background

– A pseudo-random functions (PRF) uses key k from a key space K on input M of length n-bits
and output n-bits. F : K × {0, 1}n → {0, 1}n. We write Fk(M).

– A pseudo-random generator (PRG) on input M of length k-bits is defined as: G : {0, 1}k →
{0, 1}k × {0, 1}k. We write G{0,1}(M). By G0(M) we denote the first k bits output G on input
M . By G1(M) we denote the next k bits output G on input M .

– Let {0, 1}≤n denote the set of bitstrings of length at most n. If s ∈ {0, 1}∗ is a bitstring, let s1..i

denote the first i bits of s, and let len(s) denote the length of s (in bits).
– We also view s12

n−1 + · · ·+ sn−12+ sn. Each bitstring s ∈ {0, 1}≤d identifies a node in the tree;
s = 0 and s = 1 are its left and right children, respectively.

– If f : S′ → T is a function and S ⊆ S′, let f |S : S → T denote the function f restricted to S.
When given a function h : {0, 1}≤d1 → K defined on {0, 1}≤d1 , we extend it to a function defined
on all of {0, 1}∗ as needed by defining h(sb) = Gb(h(s)) for every s ∈ {0, 1}>d1 , b ∈ {0, 1}.
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Fig. 3. An example tree of secrets for four tags in our RFID pseudonym scheme. The nodes drawn with solid lines
correspond to secrets shared only between the tags T1,...,T4 and the Trusted Center. Each of these secrets is drawn
uniformly at random and independently of each other. The dashed line nodes are secrets in delegation trees, where
child nodes are derived by the GGM construction of applying a pseudo-random generator to the parent. On each read,
a tag updates its state to use the next leaf in the delegation tree for its next pseudonym. To delegate limited-time
access to a Tag, the Trusted Center can give out subtrees of the delegation tree; for example, the immediate parent
of 1 and 2 allows learning T1’s identity in time periods 1 and 2, but not in time periods 3 and 4.

We define a rooted full binary tree of depth d with k-bit string stored in the nodes and edges
labeled 0 or 1. The tree stores random k-bit strings in all nodes ≤ d1. In the nodes of succeding levels
it stores k-bit string computed by applying G as follows. If a k-bit string is stored in an internal node
v, then G0(v) is stored in v′s left son and G1(v) is stored in v′s right son. If s ∈ {0, 1}d is a bitstring
representing the position of a node v at the leaf. Let s1..d−1 denote the position of v′s parent. The
ancestor path from leaf to the root is defined by the nodes in position: (s1..d−1), (s1..d−2), ..., (s1..1)
and the function h(s1..i) represents the k-bit string value of the node in position s1..i.

5 Our Protocol

We assume a central Trusted Center role that can authenticate and authorize readers. Each Tag has
a unique ID, which we would like to keep secret from a Reader unless the Reader’s request meets
a privacy policy associated with the Tag. The Reader interacts with a Tag and learns a one-time
pseudonym p. Then the Reader asks the Trusted Center to identify the Tag. We first describe the
basic ”tree of secrets” used to generate the one-time pseudonym, including a description of the
setup phase. We then describe the process through which a tag responds to the reader. Next we
describe the mapping from pseudonym to tag identity, focusing on the problem of delegation. Later
we will show how our protocol enables a secure transfer of ownership without need to rekey the
tag.

Tree of Secrets To ensure our privacy goal the pseudonym needs to be updated whenever a tag
response is generated. Our protocol is based around a tree of secrets of depth d = d1 + d2 as shown
in Figures 3. Each node represents a cryptographic secret of length k-bit.

The first d1 levels contain node secrets that are chosen independently of each other. The Trusted
Center maintains the tree and generates these secrets at system initialization time using the al-
gorithm TC.GenTC. The TC associates each tag with one node at depth d1 and the following



Tag State:

c, a counter in {0, 1}d. Initialized to 0.
h, where h = H|S for some set S ⊆ {0, 1}≤d1 .

Algorithm Tag.Respond():

1. Pick r ∈R {0, 1}k uniformly at random.
2. Set p := (Fh(c1..1)(r), Fh(c1..2)(r), . . . , Fh(c1..d)(r)).
3. Set c := c + 1.
4. Return (r, p).

Fig. 4. Algorithms and state for the RFID tag.

property will always hold: each tag knows all the keys from its node at depth d1 up to the root
node, but not other nodes in the tree. Secrets above d1 in the tree are shared only between a Tag
and the Trusted Center; a Reader will not have access to these secrets. We model the secret gener-
ation as a random function H kept by the TC and generated during TC.GenTC. All provisioning
is done by the TC, which also ensures no tags are given the same secrets at level d1. This algorithm
is shown in Figure 5 (see TC.EnrollTag). The TC at enrollment time also records each tag’s real
identity ID, which may be an arbitrary string.

The next d2 levels of the tree contain node secrets that are derived using a GGM tree construc-
tion [4]: each node is labelled with a secret, and the secrets for its children are derived by applying
a PRG. Knowing a secret in the tree allows computation of the secrets for every descendent, i.e.
the subtree rooted at that node, but nothing else. As shown in Figure 3, if we denote a secret
x stored in a node v at depth d1 then G0(v) is stored in v′s left son and G1(v) is stored in v′s
right son. Let s = s12

n−1 + · · ·+ sd−12 + sd be a binary string. The value of a node at depth d is
Gsd

(Gsd−1
(. . . (Gsd1

(x)))). These secrets are shared between a Tag and the TC and can be shared
with a reader during the delegation process.

Tag Response Having access to subtrees of secrets is important for a Reader, because these
subtrees allow the reader to map the Tag’s pseudonym (r, p) to an ID without needing the TC.
Each Tag T keeps a counter c. A Tag responds to a query from the reader by generating a random
number r and sending a pseudonym

(r, p) = (r, (p1, . . . , pd)) = (r, Fh(c1..1)(r), Fh(c1..2)(r), ..., Fh(c1..d)(r))

where the h(c1..i) values represent secrets along the path in the tree of secrets from the root to the
Tag’s current leaf T.c. The Tag then increments the counter c. In practice, the counter value might
be 64 bits.

Pseudocode for computing the response is shown in Tag.Respond. Each leaf value c corresponds
to a new pseudonym of the tag. Below we discuss how the TC and the Reader can use their trees of
secrets to map the pseudonym (r, p) to the Tag’s ID. Note that because the counter c increments,
the Tag will use a different path of secrets, and therefore a different pseudonym, for every Reader
response: this is what ensures that the Reader’s subtree of secrets will “expire” after a certain
number of tag reads. The complexity of Tag.Respond depends on the overall depth of the tree,
however, not directly on the size of the counter. By varying the branching factor and depth of the
tree, we can trade off between the complexity of Tag.Respond and the complexity for the reader;
we return to this in more depth in Section 7.

Mapping and Delegation To map a pseudonym p to the Tag’s identity, the TC starts at the
root of the tree of secrets. Then the TC performs a depth-first search over the tree, looking for the



TC State:
H : {0, 1}≤d1 → K, a function.

Algorithm TC.GenTC():

1. Let H : {0, 1}≤d1 → K be a random function, i.e., pick H(s) ∈R K uniformly at random
for each bitstring s of length at most d1.

Algorithm TC.EnrollTag(ID):

1. Find the smallest integer t ∈ {0, 1}d1 that hasn’t been assigned to any other tag. Assign t to this tag.
2. Set S := {t1..j : 0 ≤ j ≤ d1}.
3. Return (t 0d2 , H|S) as the state for this tag.

Algorithm TC.Delegate(L, R):
1. Set S := {x1..d1

: L ≤ x ≤ R}. Return H|S .

Algorithm TC.IdentifyTag(r, p):
1. Return DFS(r, p, 1, ǫ), where ǫ denotes the empty bitstring.

Algorithm DFS(r, p = (p1, .., pd), i, s):
1. Set ids := ∅.
2. If FH(s 0)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 0).
3. If FH(s 1)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 1).
4. Return ids.

Fig. 5. Algorithms and state for the Trusted Center.

Reader State:

h : S → K, for some S ⊆ {0, 1}≥d1 , with S initialized to ∅.

Algorithm Reader.IdentifyTag(r, p = (p1, .., pd)):
1. For each s ∈ S, do:
2. If Fh(s)(r) = plen(s), then return s.
3. return ⊥.

Fig. 6. Algorithms and state for the Reader.

path in the tree that matches the response p. At each node s, the TC can check whether the left
child s 0 or the right child s 1 matches entry pi in the response by checking whether Fs0(r) = pi or
Fs1(r) = pi, respectively. Pseudocode is shown in Figure 5 (see TC.IdentifyTag). Then the TC
can map from the identity of the tag’s current node to the tag’s real identity ID. Based on ID,
the identity of the Reader, and a privacy policy, the TC can then decide whether to reveal ID to
the reader. This provides a mechanism for enforcing a privacy policy regarding which readers are
allowed to learn which Tag IDs.

With this approach, the TC must be online for every tag read, which may incur too much
overhead for the TC. Our protocol also allows for “offline delegation” the TC to delegate access to
a certain interval of pseudonyms to the Reader. This allows the Reader to perform the mapping
itself from a pseudonym (r, p) to the Tag’s identity ID, but only if the Tag’s counter value is in a
prescribed interval [L, R] (for some 1 ≤ L ≤ R ≤ 2d).

Recall that each leaf of the tree corresponds to a different pseudonym for a tag. To delegate
access to leaves in an interval [L, R], the TC first determines the set S of all xi such that i is of
length d1 and xi falls in the interval [L, R]. The TC then sends H|S to the Reader along with the
Tag’s identity. Pseudocode is shown in TC.Delegate. In terms of our tree, the set S corresponds



to the minimal set of nodes that cover the interval [L, R]. Now, when the Reader sees the Tag’s
pseudonym (r, p), the Reader no longer needs to communicate with the TC. Instead, the Reader
computes Fh(s)(r) for all s ∈ S, which it can do because it has access to H|S . If the Reader
finds a match between the tag response and an s value, then it has learned the Tag’s identity.
Pseudocode for the Reader’s computation is shown in Figure 6 (see Reader.IdentifyTag). After
the Tag updates itself past the leaf R, however, the Reader can no longer map the Tag’s pseudonym
(r, p) back to the Tag’s identifier ID. This is because the counter Tag.c will have updated past
the subtree of secrets known to the Reader. At that point, the Reader must re-apply to the TC for
more access.

During the depth-first search, the TC determines which node at level d1 is currently in use by
the Tag. This requires 2d1 evaluations of a PRF. Because each tag has at least one node at level d1

of the tree and none of these values are shared between tags, this requires only O(log N) evaluations
of the PRF. If the TC further wishes to learn the exact counter value used by the Tag, this requires
another 2d2 evaluations of a PRF.

The Reader, by contrast, must check every value in its delegated subset S to see if it finds a
match with an entry of the Tag’s response. This takes time O(D), where D = |S|. In the case of
large subsets S, the Reader could apply the precomputation technique of Avoine and Oeschlin to
achieve time O(D

2
3 ) with a table of size O(D

2
3 ) [2].

6 Ownership Transfer

Ownership transfer in RFID is the following problem: Alice gives an RFID tag to Bob. How do
we prevent Alice from later reading the RFID tag? This problem is crucial for limiting the trust
required in readers which may need to read tags at some point in the tag’s lifetime.

In the case that Alice has not been delegated access to the RFID tag, ownership transfer in
our model is simple. The Trusted Center is notified of the transfer and updates a privacy policy
associated with the tag. Afterwards, Alice requests access to the tag’s ID. The TC then checks the
privacy policy, sees Alice no longer owns the item, and denies access. In case Alice has already been
delegated access to the tag, we introduce two methods for ownership transfer.

Soft Killing. Bob queries the TC and learns how many leaves were delegated to Alice. Suppose
this number is k. Bob then reads the tag k + 1 times. The tag will then have updated past Alice’s
access, so she will no longer be able to disambiguate the tag’s pseudonyms. Notice that even if Bob
knows how many leaves were delegated to Alice, he still cannot distinguish a tag delegated to Alice
from any other tag without Alice’s help; this is because the tag will emit a new, pseudorandom,
pseudonym on each read. Therefore knowing the number of leaves delegated to Alice does not hurt
the privacy of our protocol.

The benefit of soft killing is that it does not require shared secrets between the tag and reader.
The downside is that soft killing requires many tag reads. Soft killing also opens up the possibility
for a denial of service attack if an adversary reads the tag many times; Alice can recover from this
by simply asking the Trusted Center to delegate more access.

Increasing The Tag Counter. We allow Bob to increase the counter on a tag from c to c′. Bob
does so by sending the Tag a random seed r, after which Bob and the Tag can perform mutual
authentication and establish a secure channel with the shared secret Fh(c)(r). Bob then sends c′

to the tag. We require that c′ > c, so Bob can only increase the tag’s counter, not decrease it.
Alternatively, Bob can send the Tag a similar message identifying a subtree; the tag then updates
itself to the least leaf in that subtree. By doing so, Bob can “leapfrog” the tag over Alice’s delegated



leaves and be sure that Alice can no longer read the tag. Increasing the counter requires only one
read, but also requires that Bob share a secret with the tag. Notice that the Trusted Center need
not be involved at all in the transaction in this case.

7 Security Analysis and Optimizations

Threat Model.We now outline the security goals and threat model for our scheme. First, our
protocol provides privacy for RFID tag readings: without specific permission by the Trusted Party,
a reader cannot determine the tag identity from the pseudonym or otherwise link different readings
of the same tag. Privacy should hold even when the adversary is allowed to ask for delegated
access to tags of its choice. In particular, an adversary cannot map a tag’s pseudonym to the
tag’s ID unless it has been specifically delegated access to the tree leaf currently used by that tag.
Second, we provide replay-only security against impersonation attack. In an impersonation attack,
an adversary wishes to pretend it is a legitimate RFID tag without knowing that tag’s secrets.
Because a pseudonym protocol uses only one message from tag to reader, it necessarily falls victim
to a replay attack in which an adversary records a tag’s pseudonym and replays it later to an RFID
reader. We want a protocol where replay is the “worst” an adversary can do: without the secret
keys of a tag, an adversary cannot generate valid tag pseudonyms it has not yet seen. We believe
this limited replay-only security is tolerable, as duplicate readings of the same pseudonym can be
detected and handled by a back-end database correlating RFID information.

We say an adaptive radio-only adversary is allowed to query tags of its choice in the order of
its choice. We also assume the adversary can use the legitimate reader as an oracle to learn the
“true” identity of any given pseudonym. In Appendix A we formalize this adversary’s capabilities
with a left-or-right definition of privacy. Even stronger than this is a tag-breaking adversary, which
can compromise tags of its choice. We show in Appendix A that our protocol is private against
an adaptive radio-only adversary, even if the adversary is allowed to ask for delegated leaves. Our
protocol further achieves replay-only security against impersonation attack even against a tag-
breaking adversary.

In contrast, we lose some privacy in the case that an attacker can compromise a tag. This is
because two tags may share secrets if they share the same path in the tree. The likelihood that two
randomly chosen tags share a secret is controlled by the branching factor of our tree of secrets. At
one extreme, a tree with one level and a branching factor of N gives each tag a different secret.
At the other, a binary tree of depth d means that two randomly chosen tags have a (1

2)k chance of
sharing k secrets. Each deployment can pick the branching factor that makes an acceptable tradeoff
between privacy loss under tag compromise and reader work; our scheme still yields benefits from
delegation even at high branching factors.

From PRFs to Hash Functions. Throughout we have assumed the use of Pseudo-Random
Functions for generating tag responses. Because of the structure of our protocol, however, a Hash
function would suffice. It remains an open question whether Hash are more efficient to construct
than PRFs in practice on RFID devices and there may be not practical differences in the context
of low-cost RFID tags [13].

Truncating PRF Values. Instead of sending full PRF values in a tag response, we could send
truncated versions. This approach reduces communication overhead at the cost of causing potential
misidentification. Regarding the size of the communication, if the output of the PRF used to produce
the elements of the tag output is k’ bits, then the output message length will be size(r) + k′d bits.



Number of Tags Tag Storage Communication Tag Compute Reader Compute

220 192 112 5 5 · 210

230 256 116 6 6 · 210

240 320 120 7 7 · 210

Fig. 7. Concrete resource use of our scheme for some example parameters. We use a branching factor of 210 in all
cases, use a 64-bit r value with truncation, and we assume tags will be read at most 220 times. Tag and reader
computation are both measured in expected number of PRF evaluations.

Instead of sending full PRF outputs, we could send truncated versions. This approach raises the
costs of identifying the tag only slightly since we might navigate more than 2d branches.

We define a truncation function Ra : X → X mod 2a where 1 < a < k′ is the length in bit
of the truncated output. When truncation is applied a Tag responds to a query generated from a
reader with (r, p) := (r, Ra(Fh(c1..1)(r)), ..., Ra(Fh(c1..d)(r))).

While ”Truncating PRF Values” improves the communication efficiency, it necessarily intro-
duces false positives in the identification process. By using truncation a tag cannot be positively
identified from a single node secret, but must be probabilistically identified using multiple nodes.
In the following analysis, for simplicity, we consider a tree with branching factor 2.

– Probability of False Positive. False positives or misidentifications occur when a message identifies
at least a leaf when and only when the function Ra is applied. An upper bound of the probability
to get a false positive is given by 2−(a−1)(d).
The exact probability can be calculated by the recursion: P0 = 1 and Pn+1 = 2pPn − p2P 2

n ,
where p = 1/2a. Again by recursion we can show that 0 ≤ Pn ≤ (2p)n. We can therefore
limit the probability of false positive to ǫ by choosing a so that (2p)n ≤ ǫ, or in other words,
a ≥ 1− ln ǫ/(n ln 2).

– Search Complexity. There are two main usages for tag identification: to recognize valid messages
from tags owned by the TC and rejecting messages from unknown tags. In terms of PRF
computations a non-truncated scheme has a complexity of 2d in the first case and just over 2
in the second. A truncated scheme has the same order of complexity for values of a > 4 as we
show below.
We define Dn as the average number of tests to check that a message is not in a tree of depth
n. Again Dn can be defined by recursion as: D1 = 2, Dn+1 = 2 + 2pDn(1− Pn)/(1− pPn). By
recursion we can show that 0 ≤ Dn ≤ 2/(1− 2p).
We then define Vn as the number of tests necessary to authenticate a valid message from the
tag. Vn = n + 1/2(D1 + ... + Dn−1). For a ≥ 2, we can show that Vn ≤ (1 + d/2)n + 1. So the
number of operations to validate a message is of the order (1 + d/2)n which converges towards
2n for high enough values of a. We conclude that four-bit truncation leads to a probability of
false positive of 4.5× 10−44 for d = 48 and search complexity of 2.13 · d. Overall, the number of
verification operations does not increase while the communication overhead is greatly reduced
by a factor of a/k′.

Branching Factor and Concrete Examples. As we have noted, in practice we would employ
trees with branching factors much larger than 2. A larger branching factor reduces the depth of
the tree, and therefore reduced tag storage and communication, at the cost of more computation
for the Trusted Center and Reader. For example, consider an RFID system with 220, or about
one million, tags each of which will be read at most 220 times. We construct a five-layer tree of



secrets with branching factor 1024 = 210 at all levels. Each tag stores three 64-bit secrets s1, s2, s3,
with the third secret being the root of a GGM tree that covers the final two tree levels. For each
pseudonym, the tag runs a PRF twice to obtain s4, s5, the secrets completing the path to its current
leaf. Total tag storage is 3 · 64 = 192 bits and total tag computation is 5 applications of the PRF.
If we truncate the tag’s responses to 4 bits except for the leaf value, then use a 64-bit r and 32-bit
truncation of the leaf value, the tag’s total communication is 64 + 16 + 32 = 112 bits. The work for
the reader, on the other hand, is only 5 ·210 applications of the PRF. We show concrete parameters
for this and some other examples in Figure: 7.

8 Conclusions

Several large-scale deployments of RFID devices already exist, and more are on the way. Unless we
address the privacy issues in RFID now, we will find ourselves with legacy RFID devices that do not
support privacy at all. At the same time, mechanisms for RFID privacy must be as lightweight as
possible, both for the tag and for the supporting infrastructure. We have shown an RFID pseudonym
scheme that requires only a PRF and counter on tag, and achieves logarithmic work for the Trusted
Center to identify a tag. We argued that these assumptions are reasonable for some current RFID
deployments, such as passports and libraries, and showed that we can support large deployments
with modest tag state and communication. Further, we can delegate the ability to identify RFID
tags, a novel primitive for RFID that eases ownership transfer between mutually distrusting parties
and allows limiting the trust placed in a single RFID reader. By using our protocol, we can enhance
the privacy properties of a wide range of current and future deployments of RFID technology.
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A Security Analysis

A.1 Definitions

Exp-NoDelegation():

1. Call IN.GenTC(1k).
2. For i := 1 to N , do:
3. Set Ti := IN.EnrollTag().
4. Choose b ∈R {0, 1} uniformly at random.

5. Set b′ := AReader,Ob(i,j).

Exp-Delegation():

1. Call IN.GenTC(1k).
2. For i := 0 to N , do:
3. Set Ti := IN.EnrollTag().
4. Choose b ∈R {0, 1} uniformly at random.

5. Set b′ := AReader,IN.Delegate,Ob(i,j).

Fig. 8. Experiments for definition of private RFID pseudonyms, with and without delegation.

Experiment-ReplayOnly-TagCompromise():

1. Call IN.GenTC(1k).
2. For i := 0 to N , do:
3. Set Ti := IN.EnrollTag().

4. Return AReader,IN.Delegate,IN.IdentifyTag,BreakTag,Ob(i,j).

Fig. 9. Experiment for definition of replay-only security of RFID pseudonyms under tag compromise attack.

We define privacy for our RFID pseudonym protocol by the experiments shown in Figure 8.
In these experiments, we define a sequence of tag oracles T1, . . . , TN . On a query, an oracle runs
Tag.Respond , updates the tag’s state, and returns the corresponding result. Our experiments use
a “left-or-right” style of definition in which the adversary is given a special oracle Ob(i, j), where
b ∈ {0, 1}. If b = 0, the oracle Ob will behave like the tag oracle Ti on query (i, j), otherwise Ob

will behave like the tag oracle Tj . The adversary, based on its interaction with Ob(i, j) and other
tag oracles, must decide whether b = 0 or b = 1. The adversary may make as many queries as it
wishes to the special oracle Ob.

Notice that the adversary has access to an individual tag oracle Ti by querying the left-or-
right oracle with (i, i). This access does not allow for trivial distinguishing because tag oracles are
stateful and update their counters on each invocation. Further note that while we have provided
the adversary with an oracle for the RFID reader, in this experiment interaction with the reader
cannot help the adversary, as the reader produces no output.

When we do not allow delegation, we use Exp-NoDelegation and define the advantage of
such an adversary as AdvNoDelegationA := |Pr[b = b′] − 1

2 |. We say that a pseudonym protocol is
(t, q, ǫ)-private against no-delegation adversaries if the advantage of an adversary A that runs in
time at most t and makes at most q queries is at most ǫ.

We can also define privacy against an adversary that asks the Trusted Center for delegated
access to tags. We model this by augmenting the adversary with an IN.Delegate oracle that gives
the adversary access to the Trusted Center’s Delegate functionality, with a special restriction on
the queries of the adversary. We will stipulate that the adversary may not query O(i, j) with a tag
Ti such that the adversary previously queried the value Ti.ctr of that reading to IN.Delegate but
not Tj .ctr or vice versa.



Similarly, if the adversary has queriedOb(i, j), we prohibit the adversary from calling IN.Delegate

on a range of leaves used by i in its state at that query but not j or vice versa. We enact similar
restrictions for the cases of i and j whose leaf values have both been queried to IN.Delegate.
These restrictions rule out “trivial” tag distinguishing, in which A distinguishes a tag for which it
has legitimate access from IN.Delegate from a tag for which it has no such access, or distinguishes
two tags for which it has legitimate access.

We also consider security against impersonation attacks. In an impersonation attack, the adver-
sary wishes to falsely convince a reader that a tag is present. Our protocol admits a replay attack,
because an adversary can record a tag’s response and replay it later to a reader. Replay, however, is
the worst the adversary can do. Even if the adversary can choose tags, compromise them, and learn
all secrets of the chosen tags, the adversary cannot create non-replayed pseudonyms for any of the
remaining tags. We formalize this notion, which we call replay-only security against impersonation
under chosen tag compromise by the experiment in Figure 9.

In the experiment, BreakTag is a special oracle that on query i returns the internal state
for the tag oracle Ti, including the tag’s secret key Ti.TK. We define the advantage of A as the
probability that A queries IN.IdentifyTag with a value v not previously returned by Tj that causes
IN.IdentifyTag to return j for some j not previously queried to BreakTag or IN.Delegate.
We define (t, q, ǫ) replay-only security under chosen tag compromise to mean that an adversary
running in time t and making more than q queries has advantage at most ǫ.

A.2 Proofs of Security

We now prove that our pseudonym scheme satisfies the definition of privacy in the previous section
both with and without delegation. We also show our scheme provides replay-only impersonation
security under tag compromise attack.

Theorem 1. Suppose {Fs}s∈K is a (tPRF , qPRF , ǫPRF )-PRF and G is a (tPRF , ǫPRG)-PRG. Then
our pseudonym protocol for a tree of depth d and delegation tree of depth d2 is (t′, q′, ǫ′) pri-
vate against a no-delegation adversary, with t′ = d(tPRF ) + d2(tPRG), q′ = (qPRF /d), and ǫ′ =

q′2d(ǫPRF + 2 q2

2k + q′dǫPRG).

Proof. The main idea of the proof is to first analyze the protocol as if all r values that appear
in pseudonyms are distinct and all secrets in the tree are generated randomly.We then bound the
probability that the pre-conditions fail to hold.

Lemma 1. (Pseudonym Indistinguishability (PI) Lemma). Let ai and bi be the secrets for tag
oracles Ta and Tb, and assume that for all i, we have ai and bi chosen uniformly from K. Then
the response of Ta, A := (r1, Fa1(r1), . . . , Fad

(r1)) is (tPRF /d, 2d · ǫPRF )-indistinguishable from the
response of Tb B := (r2, Fb1(r2), . . . , Fbd

(r2)) over r1, r2 ←R {0, 1}k, provided r1 6= r2 and ai 6= bj

for all i and j.

Proof. (Lemma) We build hybrids between A and B. At some hybrid ℓ we distinguish between
Faℓ

(r1) and Fbℓ
(r2). This contradicts the PRF Which-Key Lemma. The security loss is a factor

of d, which when combined with the factor of 2 from the Which-Key Lemma gives us a total of
2d · ǫPRF .

Lemma 2. (Precondition Lemma). The probability that the preconditions of the PI Lemma are not

met over q′ queries is at most 2 q′2

2k + q′d · ǫPRG.



Proof. (Lemma) Let BAD be the event that not all the preconditions of the PI Lemma are sat-
isfied. We see that Pr[BAD] = Pr[RCOLLIDE] + Pr[KEY COLLIDE] + Pr[GGMFAIL]. Here
RCOLLIDE is the event that some r appears twice as a response to an adversary query. By

the Birthday Paradox, after q queries, Pr[RCOLLIDE] ≈ q′2

2k . By a similar argument, the event

KEY COLLIDE that two keys in the tree of secrets are equal is at most (q′d)2

2k .
The event GGMFAIL is the event that the adversary can distinguish the PRFs in a tag’s

response keyed with elements of a GGM tree gi from PRFs keyed with truly random values ti. We
bound the probability of GGMFAIL by building hybrids between (r1, Ft1(r1), . . . , Ftd(r1)) and
(r2, Fg1(r2), . . . , Fgd

(r2)). As we walk from hybrid to hybrid, there must be some ℓ such that A
distinguishes Ftℓ(r1) from Fgℓ

(r2). This contradicts the security of the PRG. We lose a factor of d
for a total probability of dǫPRG for each query, a total of q′dǫPRG.

Combining the PI Lemma and the Precondition Lemma for each of the adversary’s q′ queries,
we see that the responses of the oracle O1(i, j) and O0(i, j) are (t, q′dǫPRF )-indistinguishable from

each other for all q′2 pairs of i and j with probability at least 2 q2

2k + qdǫPRG. Therefore our protocol

is (t′, q′, q′2dǫPRF +2 q′2

2k +q′dǫPRG)-private. Because each query has d PRF invocations and d2 PRG
invocations, we have q′ = qPRF /d and t′ = dtPRF + d2tPRG

Theorem 2. Suppose F : K×{0, 1}k → {0, 1}k
′
is a (tPRF , qPRF , ǫPRF )-PRF and G is a (tPRG, qPRG)-

PRG. Then our protocol is (t′, q′, ǫ′) private for a tree of secrets of depth d against an adver-
sary with access to a delegation oracle, with t′ = d(tPRF + tPRG)q′, q′ = qPRF /d, and ǫ′ =

q′22ǫPRF + q′d(2ǫPRF + ǫPRG) + 2 q′2

2k .

Proof. The main idea of the proof is to show that the tree values obtained by the adversary via
IN.Delegate do not give the adversary much advantage at distinguishing PRFs keyed with the
remaining, unrevealed values gi in the same subtree. We express this in the following lemma:

Lemma 3. (GGM Resilience Lemma). Let t1, . . . , td2 and g1 be chosen uniformly from {0, 1}k. Let
g1, . . . , gd2 be a path of secrets in a GGM tree with root g1. Let v1, . . . , vℓ be a subset of secrets in
the same GGM tree such that no gj is a descendant of vi for all i and j. Then for all vi and gi,

|Pr[A
Ft1 ,...,Ftd2 (v1, . . . , vℓ) = 1]− Pr[A

Fg1 ,...,Fgd2 (v1, . . . , vℓ)]| ≤ ǫ′′, where ǫ′′ = d(2ǫPRF + ǫPRG).

Proof. (Lemma) We build a hybrid sequence of oracles between Ft1 , . . . , Ftd2
and Fg1 , . . . , Fgd2

.
Because A distinguishes the extreme hybrids, there must be some ℓ for which A distinguishes the
oracle sequence Ft1 , . . . , Ftℓ , Fgℓ+1

, . . . , Fgd2
from Ft1 , . . . , Fgℓ

, Fgℓ+1
, . . . , Fgd2

. Therefore A distin-
guishes Ftℓ from Fgℓ

.
Now there are three cases. In case 1), if ℓ = 1, then by the PRF Which-Key Lemma we see

that Ft1 and Fg1 are distinguishable with probability at most 2ǫPRF , as both t1 and g1 were chosen
uniformly at random.

In case 2), there exists a vi such that vi is a descendant of gℓ. Let α be the bit-string which
encodes the sequence of G0 and G1 applications which produce vi when applied to gℓ. Then we can
build a distinguisher A2

PRG that contradicts the security of G. On on input m, A2
PRG computes

Gα(m) and runs AF(m)(Gα(m)). We see that if G is an ǫPRG-secure PRG, then Ftℓ and Fgℓ
are

distinguishable with probability at most ǫPRG.
In case 3), no vi is a descendant of gℓ. Let vj be the value that minimizes the edge distance

between gℓ and a, where a is the least common ancestor of vj and gℓ. By the argument of case 2), a is
distinguishable from a random value with probability at most ǫPRG. Therefore gℓ is indistinguishable
from random, and so Ftℓ and Fgℓ

are distinguishable with probability at most ǫPRG.
Putting it together, we obtain a bound of d(max(2ǫPF , ǫPRG)) ≤ d(2ǫPRF + ǫPRG).



Now consider the adversary’s queries to Ob(i, j). If the adversary has asked for delegated values
in the same GGM tree as Ti.ctr or Tj .ctr, we apply the GGM Resilience Lemma. Otherwise we
apply the bound on GGMFAIL from the Precondition Lemma. As before, we apply the Birthday
Paradox to bound the probability that an r re-appears in any query of the adversary and the
probability any keys are repeated. Finally we can apply the PI Lemma to see that the responses of
O0 are indistinguishable from the responses of O1 for all q′2 pairs of i and j. This yields the result.

Theorem 3. Suppose F : K × {0, 1}k → {0, 1}k
′
is a (tPRF , qPRF , ǫPRF )-PRF. Then our protocol

is (t′, q′, ǫ′) replay-only secure under chosen tag compromise, with t′ = dtPRF q′, q′ = qPRF /d, and

ǫ′ = dǫPRF + (q′d)2

2k .

Proof. Assume for contradiction that there exists an adversary A that breaks replay-only security
under chosen tag compromise. Let S := {s1, . . . , sbreak} be the secrets obtained by A from calls to
the BreakTag oracle. Let W := (r, x1, . . . , xd) be A’s successful query to the IdentifyTag oracle
and j be the value returned by that oracle. By the definition of IN.EnrollTag , there exists some
sj /∈ S and some ℓ such that Fsj

(r) = xℓ, assuming all keys in IN.H are distinct, which occurs with

probability approximately (1− (qd)2

2k ). By the construction of our experiment, r never appeared in a
response from tag j and so Fsj

(r) has not appeared in a response to an adversary query. Therefore
xℓ predicts an output of Fsj

, contradicting the fact that Fsj
is a PRF.
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Abstract— Radio frequency identification (RFID) is the latest technology to play an important role
for object identification as a ubiquitous infrastructure. However, current low-cost RFID tags are highly
resource-constrained and cannot support its long-term security, so they have potential risks and may
violate privacy for their bearers. To remove security vulnerabilities, we propose a robust mutual au-
thentication protocol between a tag and a back-end server for low-cost RFID system that guarantees
data privacy and location privacy of tag bearers. Our protocol firstly provides reader authentication and
prevent active attacks based on the assumption that a reader is no more a trusted third party and the
communication channel between the reader and the back-end server is insecure like wireless channel.
Also, the proposed protocol exhibits forgery resistant against simple copy, or counterfeiting prevailing
RFID tags. As tags only have hash function and exclusive-or operation, our proposed protocol is very
feasible for low-cost RFID system compared to the previous works. The formal proof of correctness of
the proposed authentication protocol is given based on GNY logic.
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1 Introduction

Radio Frequency Identification (RFID) is currently
considered as the next generation technology that is
mainly used to identify massive objects and will be
a substitution for an optical bar code system in the
near future. The typical RFID system consists of Ra-
dio Frequency (RF) tags, or transponders, and RF tag
readers, or transceivers [8, 12]. A back-end server is
usually included in RFID system as an individual com-
ponent [4, 11, 12, 14]. The micro-chip equipped on a
tag has a unique identification information and is appli-
cable for various fields such as animal tracking, supply
chain management, inventory control, etc.

The existing RFID systems are vulnerable to many
security risks and imply potential privacy problems,
since the implementation of well-known cryptographic
algorithms remains hard due to the restricted compu-
tational power and the memory size of a low-cost RFID
tag [3, 4, 6, 11, 12, 14]. User privacy issues are con-
sidered as a big barrier for the proliferation of RFID
system applications since the data of a tag can be trans-
mitted by an illegal interrogation without its bearer’s
attention.

To remove security vulnerabilities, an authentication
protocol for RFID systems can be considered as a se-
curity measure. As discussed in [1, 3, 11, 14], one of
the important issues to provide the security services
under RFID environment is to design an authentica-
tion protocol keeping the low computational power of
RFID tags in mind. In this paper, we propose a ro-
bust mutual authentication protocol that fits the low-
cost RFID system environment. Our protocol meets
the privacy protection for tag bearers, which requires
confidentiality, anonymity, and integrity in the crypto-
graphic point of view. The proposed protocol is robust
enough against the active attacks such as the man-in-
the-middle attack, and the replay attack as well as the
data loss [11, 12, 13]. Our protocol is based on mutual
authentication between a tag and a back-end server,
and provides authentication for the reader in a special
case the reader is no more regarded as the trusted third
party (TTP). We consider forgery resistance against the
attacker who copies or counterfeits a prevailing RFID
tag.

The remainder of the paper is organized as follows:
In Section 2, we introduce RFID system primer and



its related works, and then propose new authentication
scheme in Section 3. We discuss the security proof of
our scheme and suggest its security and performance in
Section 4 and Section 5, respectively.

Finally, we conclude this paper in section 6.

2 Related Works

A hash function is a powerful and yet computational
efficient cryptographic tool. Based on the one-wayness
of hash function together with authentication process
for low-cost RFID system are currently considered as
the proper solution in the aspect of security require-
ments and hardware implementation for low-cost RFID
tags. According to [9], a hash function can be imple-
mented with only about 1.7 K-gate.

Weis et al. [14] introduced two hash-based authenti-
cation schemes; hash-lock scheme and extended hash-
lockscheme. Their schemes mutually authenticate a tag
and a back-end server, and try to provide the user pri-
vacy protection features such as anonymity on a tag’s
data. However, their proposed protocols are neither pri-
vate nor secure against eavesdroppers since the attacker
can track metaID and (r, fs(r) ⊕ ID) and imperson-
ate the tag to a legitimate reader. Extended hash-lock
scheme also has an implementation issue like a random
number generator into each tag.

Recently, Henrici and Müller [4] proposed a simple
and efficient authentication protocol for low-cost RFID
system. Their protocol is based on a hash function
embedding in a tag and a random number generator
on a back-end server to protect the user information
privacy, the user location privacy, and the replay attack.
Their scheme also provides a simple method for the data
loss. However, this protocol cannot resist against the
man-in-the-middle attack. The attacker can be located
between a legitimate tag and a legitimate reader and
obtain the information from the tag. Thus, the attacker
easily can be authenticated by the legitimate reader
before the next session.

In the previous schemes, a reader is generally re-
garded as a TTP without the loss of security. However,
the wireless communication channel between a reader
and a back-end server can be considered as the inse-
cure channel. Thus, an adversary can impersonate as
a legitimate reader. Previous schemes cannot prevent
the man-in-the-middle attack when a reader is no more
a TTP. Besides, previous results did not clearly denote
the linkage between the authentication information and
the tag, so forgery is easily enabled with the passive
eavesdropping.

3 Our Proposed Protocol

3.1 Notations

We use the notations as summarized in Table 1 to
describe the protocol throughout the paper. Like [4],
we adopt the similar database structure and the same
mechanism to prevent the data loss.

Table 1: Notations

T RF tag, or transponder.

R RF tag reader, or transceiver.

B Back-end server, it has a database.

D A database of B.

C Chip serial number that is embedded into T .

Ek() Symmetric-key encryption function with the key, k.

Dk() Symmetric-key decryption function with the key, k.

h() One-way hash function.

hk() Keyed hash function with the secret key k.

ID Temporary identification value of T , it is used to

make the shared secret k2 randomized.

ID′ Temporary value to be used to make the shared secret

k1 randomized.

k Secret key shared between R and B.

k1 Shared random secret between T and B.

k2 Shared random secret between T and B.

RNG Random Number Generator in R.

r Random number generated by RNG.

S Keyed one-way hash value of hk(r).

⊕ Exclusive-or (XOR) function.
?
= Verification operator to check whether the left side is

valid for the right side or not.

← Update operator from the right side to the left side.

T1 A field for the shared random secret, k1.

T2 A field for the shared random secret, k2.

AE A field for the pointer linking a pair of records.

CN A field for the chip serial number, C, of T .

DATA A field for all other application related data of T .

3.2 Assumptions and Attacking Model

Our protocol works under the natural assumption
that T has a hash function, XOR gate, and the capabil-
ity to keep state during a single session. The widely ac-
ceptable low-cost RFID tags likely require the usage of
passive tags [12, 14]. To design our proposed protocol,
we assume the low-cost RFID tag is passive and has a
re-writable memory like EEPROM with reasonable size
like EPC Class 2 of EPC Global [13]. In Crypto 2004,
Biham et al. [5, 15] showed that collision of SAH0,
MD4, MD5, HAVAL-128, and RIPEMD in a special
case is easily found. With this in mind, we expect that
the cryptographic hash function used in our protocol
has the desirable security like preimage resistance, sec-
ond preimage resistance, and collision avoidance. In
our protocol, we assume T has a hash function. In [9],
a hash function unit with block size of 64-bit can be
implemented with only about 1.7 K-gate, so it is also
assumed that there will be the practical implementa-



tion of hash function for the low-cost RFID tag with
the desirable security. Like [4, 11], we assume that T
only has its authentication related information. A tag
also has a memory for keeping values of ID, k1, and
k2 to process mutual authentication. The simple struc-
tures for the database record and the tag memory are
shown in Figure 1. Other required data of T for an
application are stored in the database of B.

In the previous schemes [4, 14], they assumed that
R is a TTP and the communication channel between
R and B is secure. However, we assume that R is not
a TTP and the communication channel is insecure like
the current wireless network. We also assume that k is
the secret key for keyed hash function shared between
R and B, andR and B has enough capability to manage
the symmetric-key cryptosystem and sufficient compu-
tational power for encryption and decryption.

To solve the security risks and privacy issues, the
following attacking model must be assumed and pre-
vented [4, 12, 13, 14]. However, in our protocol, we do
not consider a physical attack like detaching RFID tag
physically from a product because it is hard to carry
out in public or on a wide scale without detection. We
consider the following attacks:

- Man-in-the-middle attack: The attackers can im-
personate as a legitimate reader and get the in-
formation from T , so he can impersonate as the
legitimate T responding to R. Thus, the attacker
easily can be authenticated by the legitimate R
before the next session.

- Replay attack: The attackers can eavesdrop the
response message from T , and retransmit the mes-
sage to the legitimate R.

- Forgery: The simple copy for the information of
T by eavesdropping is enabled by the adversary.

- Data loss: The protocol can be damaged from the
denial-of-service(DoS) attack, power interruption,
and hijacking.

3.3 Security Requirement

To protect the user privacy, we consider the following
requirement in cryptographic point of view [13, 11].

- Data Confidentiality: The private information of
T must be kept secure to guarantee user privacy.
The information of T must be meaningless for
its bearer even though it is eavesdropped by an
unauthorized R.

- Tag Anonymity: Although the data of T is en-
crypted, the unique identification information of

T is exposed since the encrypted data is constant.
An attacker can identify each T with its con-
stant encrypted data. Therefore, it is important
to make the information of T anonymous.

- Data Integrity: If the memory of T is rewritable,
forgery and data modification will happen. Thus,
the linkage between the authentication informa-
tion and T itself must be given in order to pre-
vent the simple copy for T . On the other hand,
the data loss will happen from the DoS attack,
power interruption, message hijacking, etc. Thus,
the authentication information between T and B
must be delivered without any failure, and the
data recovery must be provided.

Besides, we must consider and evaluate the following
security feature in the design of RFID authentication
protocol.

- Mutual authentication and reader authentication:
In addition to access control, the mutual authen-
tication between T and B must be provided as a
measure of trust. By authenticating mutually, the
replay attack and the man-in-the-middle attack to
both T and B is prevented. B also must authenti-
cate R to avoid the man-in-the-middle attack by
an illegitimate R over the insecure channel.

3.4 Protocol Design

The overall protocol is shown in Figure 1. The de-
tailed procedures for each step are described.

3.4.1 Initial Setup

1) Each T is given two fresh random secrets and a
database, D, of B also stores them as the shared
secret. The temporary used two shared secrets
are k1 and k2 ∈U {0, 1}l. T has a hash function
and a XOR function. T does not need to have the
additional storage for its serial number, C, since
C is unique and permanently embedded into each
T [8]. The initial identification data, h(k1), k1,
and k2 are initially stored into ID, k1, and k2 of
each T ’s memory, respectively.

2) R has a RNG with a keyed hash function, gen-
erates a fresh random nonce, r ∈U {0, 1}l, and
calculates hk(r) for every session. R and B man-
age the secret key k for keyed hash function. We
simply denote hk(r) by S.

3) The database, D, of B manages a record pair for
each tag consisting of 〈T1, T2, AE, CN,DATA〉
like [4]. AE is not set since no associated en-
try exists initially at this moment. CN , keeps



the unique chip serial number, C, for each T . B
has a hash function and a keyed hash function to
verify T and R, respectively. The pair of records
point each other with the pointer field, AE.

3.4.2 Detailed Description

We describe the proposed protocol according to the
sequence of message exchange and also discuss the se-
curity goals that are achieved during the execution of
each protocol message.

B R T
(h(), hk(),⊕) (RNG, hk()) (h(),⊕)

k1, k2, C r, S = hk(r) k1, k2, C

query with S -
1) challenge

ID = h(k1 ⊕ S ⊕ C)

ID¾
2) T -R response

ID, S, r
¾

3) R-B response

Verify S
?
= hk(r) (abort if not)

then

Retrieve 〈k1, k2, C〉 from 〈T1, T2, CN〉 ∈ D

Verify ID
?
= h(k1 ⊕ hk(r)⊕ C)

(abort if not)

then ID′ = h(k2)

ID′, Ehk(S)(DATA)
-

4) B-R reply

k1 ← k1 ⊕ ID′

k2 ← k2 ⊕ ID

Dhk(S)(DATA)

ID′ -
5) R-T reply

Verify ID′ ?
= h(k2)

(abort if not)
then

k1 ← k1 ⊕ ID′
k2 ← k2 ⊕ ID

Database Records

T1, T2, AE, CN , DATA

Tag Memory

ID, k1, k2

-¾
Insecure Channel Insecure Channel

Figure 1: Proposed Authentication Protocol

Step 1 (Challenge) In this step, R usually applies a
collision-avoidance protocol like the secure binary
tree walking [2, 13] or the standard protocols of
ISO 18000-3 MODE [7] to singularize T out of
many. R generates a fresh random nonce, r, and
randomizes it with the keyed one-way hash func-
tion, S = hk(r). R sends S to the queried T .
The key, k, is shared by R and B, and S is used
to authenticate the validity of R. With S, the
man-in-the-middle attack is prevented against an
active attacker. It is also used to detect the ille-
gitimate R by B after step 3.

Step 2 (T -R Response) When queried, T sends ID

to R. ID is the output of one-way hash function

and used as the identification information. ID

has two purposes: One is to verify the legitimate
R with S, and another is to prevent the forgery
with C by the passive eavesdropping. ID is ran-
domized with the shared secrets, k1 and k2 for
every read attempt.

Step 3 (R-B Response) R simply forwards ID to B.
At the same time,R also transmits S and r to pre-
vent the man-in-the-middle attack and to detect
the illegal R. Within this step, B authenticates
R and T consequently with ID.

At first, B verifies whether the forwarded r is valid
or not by comparing S with hk(r). k is the shared
secret key only between R and B, so B can detect
the illegal R and discards the forwarded message.
So, the man-in-the middle attack by the illegiti-
mate R and a passive eavesdropper can be pre-
vented.

IfR is valid, B retrieves the records corresponding
to ID and get k1, k2, and C from T1, T2, and CN ,
respectively. Then, B authenticates T with ID.
B calculates h(k1⊕hk(r)⊕C) and compares with
ID.

Since B initially stores the chip serial number, C,
B can evaluate the linkage between the forwarded
authentication information ID and T itself in or-
der to prevent forgery. Forgery can be detected
and prevented by B at this moment.

At the same time, B can detect and prevent the
man-in-the-middle attack since S is used as the
factor of the man-in-the-middle attack detection.
Similarly, the replay attack can be also detected
and prevented simultaneously.

If B successfully finishes the authentication pro-
cess, B generates ID′ with its one of shared ran-
dom secrets k2. ID′ will be used to make the
shared secret, k1, anonymous in the remaining
steps.

The database of B generates a new record to con-
sist of a pair of records and updates with the cor-
responding record. AE has the value to point the
pair of records each other. When errors or the
data loss in message for the current session hap-
pens the database of B can refer to the record of
the previous session pointed by AE of the current
session. Thus, the protocol is reliable for the data
recovery against the data loss.

Step 4 (B-R Reply) B encrypts the DATA using hk(S),
the randomly created shared secret key between B



and R. Then, B replies ID′ and Ehk
(S)(DATA).

Then, B makes its shared two keys, k1 and k2,
randomized simply by Xoring. The same process
will be applied to the next step for making the
corresponding shared secrets of T to be anony-
mous. After this step, the corresponding decryp-
tion process, Dhk

(S)(DATA), is processed by R
to get DATA. Thus, DATA of T is securely
obtained only by the legitimate R although the
adversary eavesdrops the reply messages on the
insecure channel.

Step 5 (R-T Reply) Like step 3, R forwards ID′ to
the corresponding T . Then, T processes the mu-
tual authentication. T verifies the forwarded ID′,
calculates h(k2) and compares it with ID′. If
matched, the mutual authentication is finally suc-
ceeded, and T , as the last process, updates the
shared secrets k1 and k2 simply exclusive-ors with
ID and ID′, respectively. Otherwise, T will not
updates them in a case the replay attack to T
occurs.

4 Correctness

In this section, we prove the correctness of the pro-
posed protocol based on GNY logic [10]. Specifically,
the correctness means that after the protocol execution,
the communication parties, T and B, believe that they
are sharing two fresh secrets, k1 and k2, and ensure
that this belief is confirmed by the other side. In addi-
tion to this, two entities, R and B should believe that
they share the secret keys in a case the communication
channel between the two entities is insecure.

In the forthcoming description, we use the conven-
tional notations as follows: T, R, and B are entities, T ,
R, and B, respectively; Ki

1 and Ki
2 are shared secrets

for i-th session between T and B. H() is a one-way
hash function and HK() is a one-way keyed hash func-
tion; NR is a random nonce generated by R; K is a
shared secret for HK() and KRB is a shared secret for
conventional encryption;m is data; other notations like
T1, P1, F1, etc. follow the logical postulates of GNY
logic [10].

4.1 Formalized Protocol

The conventional notations of the generic type of pro-
tocol are not convenient for manipulation in a logic. In
this section, we, at first, simplify the protocol and de-
scribe it as a generic type. Then, we formalize the
generic type of the protocol for verification goals as
shown in Table 2.

Table 2: Generic Type of Protocol

Protocol Generic Type:

Msg. 1 R → T : HK(NR)

Msg. 2 T → R : H(Ki
1 ⊕HK(NR)), H(Ki

1 ⊕HK(NR)⊕ C)

Msg. 3 R → B :

H(Ki
1 ⊕HK(NR)), H(Ki

1 ⊕HK(NR)⊕ C), HK(NR), NR

Msg. 4 B → R : H(Ki
2), {m}KRB

Msg. 5 R → T : H(Ki
2)

Formalized Protocol:

Msg. 1 T / ?(HK(NR)) ; R |≡R
K←→ B

Msg. 2 R / ?(H(Ki
1 ⊕HK(NR))) ; T |≡φ(H(X))

Msg. 3 B / ?(H(Ki
1 ⊕HK(NR))) ; B |≡R

K←→ B

Msg. 4 R / ?(H(Ki
2), {R KRB←−−→ B}KRB

) ; B |≡R
KRB←−−→ B

Msg. 5 T / ?(H(Ki
2)) ; T 3 Ki

2

Table 3: Goals of the Correctness Proof

1. B |≡T |∼ ](H(Ki
1 ⊕HK(NR))) 2. T |≡B |∼ ](H(Ki

2))

3. R |≡R
K←→ B 4. B |≡R

K←→ B

5. R |≡R
KRB←−−→ B 6. B |≡R

KRB←−−→ B

4.2 Proof Goals and Assumptions

The proof goals of correctness are shown in Table 3.
The first two goals, (1) and (2), are for the shared se-
crets. Those beliefs are to state that two entities shared
secrets each other exchange fresh messages. The goals
(3-6) are about shared keys between two entities. (3)
and (4) are for a keyed hash function to guarantee the
validity of reader, and (5) and (6) are for message en-
cryption and decryption based on the symmetric key
cryptosystem.

Table 4 shows the initial assumptions for our proto-
col. Assumptions (1-4) state that T has a hash func-
tion, B has a hash functions and a keyed hash function,
R has a RNG and a keyed hash function, and the ran-
dom nonce NR of R and the keyed hash value HK(NR)
are fresh. The next six assumptions (3-8) are for two
fresh shared secrets, K1 and K2, between T and B. As-
sumptions (9) and (10) are based on the assumptions
(1-8) andR must be a trusted entity in the viewpoint of
B since the authentication messages from T are trans-
mitted via R. The abilities for verifying the hashed
authentication message transmitted from T by B and
from B by T respectively are based on assumptions (11-
14). Assumptions (15-20) mean that both entities, R
and B, trust each other with those keys, K and KRB .

4.3 Verification

In this section, the formal proof of our protocol is
stated. The proof based on GNY logic is processed
with the assumptions of Table 4. We strictly follow



Table 4: Initial Assumptions for Proof

1. T 3 H(X) 2. R 3 HK(X)

3. B 3 (H(X), HK(X)) 4. T |≡ ](NR)

5. T 3 (Ki
1, Ki

2) 6. B 3 (Ki
1, Ki

2)

7. T |≡ ](Ki
1, Ki

2) 8. B |≡ ](Ki
1, Ki

2)

9. T |≡T
Ki

1,Ki
2® B 10. B |≡T

Ki
1,Ki

2® B

11. T |≡B 3 (Ki
1, Ki

2, C) 12. B |≡T 3 (Ki
1, Ki

2, C)

13. T |≡B Z⇒ T
Ki

1 B 14. T |≡ ](H(Ki
2))

15. T |≡R Z⇒ B |∼H(Ki
2) 16. B |≡T Z⇒ T

Ki
2 B

17. R 3 (K, KRB) 18. R |≡R
K,KRB←−−−−→ B

19. B 3 (K, KRB) 20. B |≡R
K,KRB←−−−−→ B

21. B |≡R Z⇒ R
K,KRB←−−−−→ B 22. R |≡B Z⇒ R

K,KRB←−−−−→ B

the logical postulates of [10]. We refer n is the num-
ber of list and denote the list of proof goals of Table 3
by Gn, the list of assumptions of Table 4 by An, and
the verification steps by (n). The extensions to mes-
sages are the precondition and are valid since they hold
when messages are sent as are evident from the initial
assumptions.

Message 1 T / ?(HK(NR)) ; R |≡R
K←→ B

1. T / HK(NR) /*By T1*/

2. T 3 HK(NR) /*By P1*/

3. T |≡ ](H(NR)) /*By F1*/

4. T |≡ ](HK(NR)) /*By (2),F10*/

Message 2 R / ?(H(Ki
1 ⊕HK(NR))) ; T |≡φ(H(X))

5. R / H(Ki
1 ⊕HK(NR)) /*By T1*/

6. R 3 H(Ki
1 ⊕HK(NR)) /*By P1*/

7. R |≡ ](H(Ki
1 ⊕HK(NR))) /*By F10*/

8. R |≡φ(H(Ki
1 ⊕HK(NR))) /*R6*/

9. R |≡ ](H(Ki
1⊕HK(NR))) /*For (7), by A18,(5),(6),(8),I1*/

10. R |≡R
K←→ B /*By A20,A22,J1*/

Message 3 B / ?(H(Ki
1 ⊕HK(NR))) ; B |≡R

K←→ B

11. B / H(Ki
1 ⊕HK(NR)) /*By T1*/

12. B 3 H(Ki
1 ⊕HK(NR)) /*By P1*/

13. B |≡ ](H(Ki
1 ⊕HK(NR))) /*By A3,A6,F10*/

14. B |≡φ(H(Ki
1 ⊕HK(NR))) /*For (12), by R6*/

15. B |≡R |∼H(Ki
1 ⊕HK(NR))

/*For (13), by A3,A6,A20,(11),(13),(14),I1*/

16. B |≡R
K←→ B /*For A18,A21, by J1*/

17. B |≡T |∼H(Ki
1 ⊕HK(NR))

/*For (13), by A3,A6,A10,(11),(13),I3*/

18. B |≡T |∼ ](H(Ki
1 ⊕HK(NR))) /*For (17), by (13),F1*/

Message 4 R/?(H(Ki
2), {R KRB←−−→ B}KRB

) ; B |≡R
KRB←−−→ B

19. R / (H(Ki
2), {R KRB←−−→ B}KRB

) /*By T1*/

20. R / H(Ki
2) /*By T2*/

21. R 3 H(Ki
2) /*By P1*/

22. R |≡ ](H(Ki
2)) /*By P1*/

23. R 3 (H(Ki
2), {R KRB←−−→}KRB

) /*For (19), by P1*/

24. R |≡B |∼ (H(Ki
2), R

KRB←−−→ B) /*For (19), applying A18,I1*/

25. R |≡B |∼R
KRB←−−→ B /* By I7*/

26. R |≡R
KRB←−−→ B /*By A20,J1*/

Message 5 T / ?(H(Ki
2)) ; T 3 Ki

2

27. T / H(Ki
2) /*By T1*/

28. T 3 H(Ki
2) /*By P1*/

29. T |≡ ](H(Ki
2)) /*By A7,F10*/

30. T |≡B |∼H(Ki
2) /*By A5,A9,(27),I3*/

31. T |≡B |∼ ](H(Ki
2)) /*By (29),F1*/

As shown above, the proof goals of Table 3 are ac-
complished by verification steps (10) for G3, (16) for
G4, (18) for G1, and (26) for G5, respectively. We omit
the proof for G6 since, for the encrypted message with
the key, KRB , there is no further message exchange af-
ter this step. That is, the encrypted message of the
entity, B, is replied to R and decrypted by R.

5 Evaluation

5.1 Security Analysis

We evaluate our protocol in the view point of the
security requirement.

Our protocol guarantees the secure mutual authenti-
cation only with the hashed messages, ID = h(k1⊕S⊕
C), ID′ = h(k2), and S = hk(r), and T does not store
user privacy information. Thus, data confidentiality of
tag owners is guaranteed and the user privacy on data
is strongly protected. In every session, we use the fresh
random nonce as the keys between entities. These keys
are randomized and anonymous since they are updated
for every read attempt. Thus, tag anonymity is guaran-
teed and the location privacy of a tag owner is not com-
promised, either. Based on the mutual authentication,
our protocol guarantees the data integrity between T
and B. By using the pair of database records and man-
aging AE as we described in the authentication step
3, our protocol provides the data recovery against the
data loss during the authentication processes.

To give the forgery resistance feature, we exclusive-or
the embedded chip serial number, C, of T to the au-
thentication information, ID. C is initially embedded
during the chip manufacturing. Whenever T generates
ID, it refers to C, so we can come up with the linkage
between ID and T itself. B keeps each tag’s chip serial
number initially and authenticates the ownership of the
authentication information for T .

Through the authentication step 1 to step 3, R sends
S to T and S, r to B for preventing the man-in-the-
middle attack. B can verify S with the calculation of
the keyed hashed value of r transmitted from R. Also,
the man-in-the-middle attack by R as an illegitimate



Table 5: Comparison between Protocols

Protocol HLS

[14]

EHLS

[14]

HBVI

[4]

Our

Scheme

User data confidentiality × 4 4 ©
Tag anonymity × 4 4 ©
Data integrity 4 4 © ©
Mutual authentication 4 4 4 ©
Reader authentication × × × ©
Man-in-the-middle attack

prevention

4 4 × ©

Replay attack prevention 4 4 © ©
Forgery Resistance × × × ©
Data Recovery × × © ©
†† Notation

© satisfied 4 partially satisfied

× not satisfied

reader is detected and prevented on the insecure chan-
nel between R and B. The DATA of the corresponding
T is not compromised since it is encrypted by B and de-
crypted by R with the randomly generated secret key,
hk(S), from S of R. The key freshness is also guaran-
teed for each session. The replay attack for T and B is
detected and prohibited through the step 3 for B and
the step 5 for T . Table 5 shows the comparison of the
security requirements and the possible attacks.

5.2 Performance Analysis

We analyze the performance of the proposed scheme
in forms of the following overheads: 1) computation, 2)
storage, 3) communication, and 4) cost.
• Computational Overhead. T requires only a hash

calculation and a XOR operation and needs three hash
calculation. However, the cost of hash calculation at
the server side is 2n, where n is the number of tags.
Compared to [4], the cost of our protocol has over-
heads for B. Meanwhile, in [4], the anonymity of tag is
guaranteed only after the authentication is successfully
completed. Therefore, the location privacy of tag bear-
ers is compromised until the next session is successfully
started. To make the output of T anonymous for the
current session, B should check for every records of D

to authenticate each tag like EHLS [14]. However, note
that the reduction of this cost should be needed for the
admirable performance.

On the other side, our protocol seems to have encryp-
tion and decryption overheads for R and B. However,
those cryptographic tools are needed to secure DATA

on the insecure channel. We assume that R and B have
enough computational power to process encryption and
decryption based on the symmetric-key cryptosystem.
• Storage Overhead. To compare with the previ-

ous protocols, we assume the sizes of all components

Table 6: Computational Loads and Required Memory

Protocol Entity HLS

[14]

EHLS

[14]

HBVI

[4]

Our

Scheme

No. of T 1 2 3 2

Hash Operation B ¬ n 3 2n

No. of Keyed R ¬ ¬ ¬ 1

Hash Operation B ¬ ¬ ¬ 1

No. of T ¬ 1 ¬ ¬
RNG Operation R ¬ ¬ ¬ 1

B ¬ ¬ 1 ¬
No. of Encryption B ¬ ¬ ¬ 1

No. of Decryption R ¬ ¬ ¬ 1

Number of Authentication Steps 6 5 5 5

Required T 1 1
2
L 1L 3L 2 1

2
L

Memory Size R ¬ ¬ ¬ 1 1
2
L

B 2 1
2
L 1 1

2
L 9L 8L

†† Notation

¬ not required n number of tags

L size of required memory

are L bits, and a RNG and a hash function are h, hk :
{0, 1}∗ → {0, 1} 1

2 L and r ∈U {0, 1}L, respectively. In
our protocol, T only has a hash function and XOR func-
tion, and the size of the memory is 2 1

2L. Thus, the
proposed protocol is light-weight and practical. We ex-
clude the comparison for the application-specified data,
DATA since the size of DATA depends on applied ap-
plications.
• Communication Overhead. The proposed proto-

col accomplishes mutual authentication between T and
B requiring five rounds. As we denote in the previous
section, some protocols [14, 11] requires three or six
rounds. However, their protocol have synchronization
problem on authentication data between T and B. Five
rounds is mostly acceptable for a minimum number of
mutual authentication in RFID environment. There-
fore, the proposed protocol is feasible in the sense of
communication overheads.
• Cost Overhead. [11, 13] claimed that the number

of gates available for security generally cannot exceed
2.5-5 K-gate. In our protocol, only one hash function
unit and the storage for XOR operation are needed. If
we assume the gates for XOR operation needs several
tens of gates, the number of expected gates is less than
2 K-gate. Therefore, the proposed protocol is feasible
and practical for low-cost RFID environment.

Table 6 shows the comparison of the computational
loads and the required memory size for a single session
with previous results [4, 14].

6 Concluding Remarks

In this paper, we proposed a robust RFID mutual
authentication protocol for the low-cost RFID environ-



ment that is computationally light-weight and anony-
mously interact between entities. The proposed pro-
tocol basically fits the low-cost RFID system environ-
ment. The tag only has a hash function with the shared
two fresh random secrets of small memory size. With
this minimal cryptographic primitive, our protocol pro-
vides the mutual authentication between the tag and
the back-end server and anonymously interacts. Our
protocol is robust enough since it protects the replay
attack and man-in-the-middle even when the reader is
not a trusted third party and the communication chan-
nel is insecure. We add the linkage feature between the
tag and its authentication data, so forgery is prohib-
ited. All authentication messages are randomized and
the tag only has its unique identification data, so the
user data privacy and the location privacy is guaran-
teed. The formal proof of correctness for the proposed
protocol was discussed based on GNY logic.
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Abstract— Radio Frequency Identification (RFID) systems will
soon become an important part of everyday life. Security mecha-
nisms for RFID systems, such as authentication and encryption,
are therefore of utmost importance.

In this article we present a concept for strong symmetric-key
authentication, which can be implemented with Class 2 RFID tags
in practice. By using strong authentication threats such as forgery
of tags, unwanted tracking of tags, and unauthorized memory
access of tags can be defeated. We describe five authentication
protocols, based on symmetric-key encryption, with different
security features all conforming to state of the art standards such
as ISO/IEC 18000-3. We calculate the timing of the proposed
protocols with a sophisticated Java simulation tool. By using
interleaved versions of the authentication protocols together with
the AES module described in [3] we show that authentication is
possible for Class 2 RFID systems in practice.

I. I NTRODUCTION

Radio Frequency Identification (RFID) is an emerging tech-
nology. The main idea behind it is to give a digital identity
to every object in a particular environment by attaching a so
called RFID tag. An RFID tag is a small microchip, with an
antenna, holding an unique ID and other information which
can be sent over radio frequency. The information can be
automatically read and registered by RFID readers. The data
received by the RFID reader can be subsequently processed
by a back-end database. A typical RFID system is shown in
figure 1.

Data
Energy
Clock

TagReader

Host

Air Interface

Antenna Antenna

Fig. 1. Model of an RFID System.

The range of possible applications vary with the capability
of the tag and are separated by different classes. Class 0
and Class 1 RFID tags are used as barcode replacement
and are read-only or can be programmed only once in the
field, respectively. Inventory maintenance which is used in the
supply chain management can be automated using such tags.
They are cheap (approximately 5 Cents) and can be used on
item-level on nearly every product.

This paper is focusing on more advanced tags (Class 2)
which also have a rewritable memory and additional hardware
resources. Such tags cost about 50 Cents and the available
silicon area is about 10,000 gates. The applications for more
advanced RFID systems are manifold but especially high-
value products like pharmaceutical and branded goods can be
protected against security vulnerabilities.

Strong authentication mechanisms can solve uprising secu-
rity problems in RFID systems and therefore give protected
tags an added value. In this paper, we propose authentication
protocols for RFID systems based on the ISO/IEC 9798-2
standard [4]. These protocols allow to protect high-value goods
against adversary attackers. Additionally, we show that these
protocols are feasible for nowadays restriction concerning data
rates and compliance to existing standards as well as the
requirements concerning chip area and power consumption.

This paper is structured as follows. In section II we give an
overview over security issues. Section III deals with related
articles in the field of RFID. The following section deals
with authentication protocols in general, and in section V the
proposed protocols are described in detail and compared.

II. SECURITY ASPECTS INRFID SYSTEMS

Unfortunately, RFID systems are susceptible to remote
attacks. The attacker can work at a certain distance to the
reader and the tag and is not bound to normative limitations.
The three main security threats are unwanted tracking, forgery,
and unauthorized memory access. An unsecured tag gives its
ID to every standard reader which sends a valid command. In
that way, everybody possessing a reader can track a person
wearing an RFID tag and collecting personal data about this
individual. For example, it is not acceptable that medical or
financial information leaks from an item a person is carrying.

Forgery of tags is also a problem when tags are used to
proof the origin of a product. High-value branded goods like
CDs, medicaments, or even immobilizer systems in cars can
be protected using security-enhanced RFID tags. Recently
this was a topic because a car immobilizer system using a
proprietary algorithm was broken [1].

The unlimited access to tag’s memory is a further point
of attack when reading sensitive data from the memory. For
example, Employers can read tags attached to medicaments of
his employees or medical or financial data stored on the tag can



be read by an unauthorized party. Unauthorized write access
can lead to forgery of data, which is especially a problem,
when the data are sensitive.

III. R ELATED WORK

Most of the work done so far regarding RFID security deals
with privacy protection and securing low-cost tags conforming
the EPC standard [2]. In this paper, we will focus on Class 2
tags that are not intended to be used in low-cost applications.
Nevertheless, we give an overview over the existing work.
The first approach to avoid tracking was to introduce a
”kill” command, which deactivates the tag permanently. This
measure was proposed to prevent tracking of consumers. The
consumer can decide, whether the tag should be ”killed” at
the cash desk or not. This is indeed an effective measure for
privacy protection, but as the tag loses its RFID capability, the
consumer cannot use the tag for RFID applications after the
cash desk.

Another proposed measure was shielding of the tag, which is
also very effective, but not always possible (e.g. when wearing
a tagged jacket or the like). Juels et. al. introduced the so called
blocker tag [9], which is able to simulate a whole range of
IDs. In that way, the reader cannot determine the ID of the
“real” tag. This method works with a particular anticollision
algorithm and can also be used for malicious purposes (e.g.
denial-of-service attack).

Other approaches employ hash functions to secure the RFID
communication. One suggestion was a so called hash-lock
scheme [13]. The tag only sends its ID to the reader if it
knows a special key, which is unique for the tag. The back-
end database has to hold the keys for all tags to find out
the correct one for one particular tag. Furthermore, the ”real”
ID and the key are transmitted, so tracking is possible. An
extension was proposed, where only randomized data is sent,
but this approach requires lots of calculations from the back-
end database and is not suited for a large number of tags. A
similar approach was suggested by NTT Labs [11], which also
uses hash functions and a large back-end database.

In 2003, RSA Labs. published a method which was called
re-encryption and used for securing banknotes [8]. Here, the
authenticity of banknotes can be proven by a signature which
is printed on the banknote and has to be read out optically.
With the optical information, one gets writing access to the
tag’s memory. A random number is chosen and this number is
written into the memory, then it is encrypted with the public
key of a law enforcement agency and also written on the
memory. The law enforcement agency can always verify the
presence of a particular banknote, whereas an attacker, after
a re-encryption, cannot detect the same banknote. In that way
unauthorized tracking is prevented.

Other approaches are silent tree walking (used for a particu-
lar anticollision algorithm) [13], one-time pad schemes (where
the tag and the reader have to exchange lists of one-time
pads) [7], global and private IDs, or lightweight authentication
protocols [12].

Cryptographic methods are at the moment mainly used
in car immobilizers and access control devices. Most these
methods used nowadays are proprietary, because they are less
costly than standard algorithms. It is a popular belief that
standard cryptographic algorithms are too slow. Proprietary
algorithms typically do not undergo a public evaluation by
the cryptographic community; their security is unknown. They
run the risk that they can easily be broken, like it was shown
for the DST algorithm used in RFID car immobilizers [1].
Furthermore, proprietary algorithms lead to closed systems.
Interoperability is therefore impossible. We however, wanted
to tackle the RFID security problem in a more general way.
A promising first step for authentication using standard mech-
anisms was presented in [3]. An AES hardware module is
described, that fits the RFID constraints. Consequently, it is
possible to employ standard symmetric authentication methods
for RFID systems. In the next section, we briefly go through
authentication in general.

IV. A UTHENTICATION PROTOCOLS

During authentication, one entity proves its identity to
another entity. Strong authentication protocols, such as
challenge-response protocols (standardized in ISO/IEC 9798)
are widely used in practice today. In challenge-response pro-
tocols, one or several messages are exchanged between the
party who wants to prove their identity (the prover) and the
party who wants to verify the identity (the verifier). In a
typical scenario, the verifier challenges the prover with an
unpredictable value that is used no more than once (the nonce).
The prover is required to return a response that is depending
on the nonce and on a secret.

Using strong authentication for RFID systems leads to
significant security enhancements. If readers are required to
authenticate themselves to tags, attacks such as unwanted
tracking and unauthorized memory access are rendered infea-
sible. If tags are required to authenticate themselves against
readers forgery of tags is prevented.

As argued in the previous section, it is advantageous to
use standardized protocols and algorithms because they have
been rigorously cryptanalyzed and are widely used. Hence,
systems based on standardized protocols and algorithms are
more likely to be secure and interoperable. Standardized
challenge-response protocols are defined upon symmetric-key
and asymmetric-key cryptographic primitives.

When using symmetric methods, both reader and tag possess
the same key. It is possible to use symmetric encryption
algorithms or MACs (message authentication codes). The
drawback of symmetric authentication methods is that every
party works with the same secret key. If the key of one
party is compromised, the whole system becomes insecure,
and key establishment and distribution is costly. Symmetric
authentication methods are best suited for closed systems,
where all devices are under the control of one central instance.
Nevertheless, also open system applications are possible, but
for each application the appropriate key establishment and
management methods have to be considered.



Asymmetric authentication methods are well suited for open
systems. Each party possess a public and a private key. With
the private key one party can sign or encrypt a message. With
the public key, which is open to everybody, each other party
can verify the encryption or the signature and can in that
way verify the identity of the message sender. Asymmetric
methods are in general more time- and power-consuming than
symmetric algorithms and are therefore out of question for
RFID systems today.

Strong symmetric-key cryptographic primitives include en-
cryption primitives such as AES [10] which allow extraordi-
nary compact implementations [3]. This module is feasible for
RFID tags and conforms the timing and energy requirements
of an RFID system. In the following section, we show how to
base strong authentication on such a compact implementation
of a strong symmetric-key encryption primitive.

V. SUGGESTEDPROTOCOLS ANDPERFORMANCE

A. Simulation of Protocols

For one tag in the reader’s field, the timing of a protocol flow
can be exactly determined by using the timing information of
the applied communication standard. If RFID systems work
with more than one tag and more than one time slot, the
order of tag responses and therefore the protocol flow can no
longer be exactly determined. The answering sequence and the
time, when an unique ID is found depend on the tag IDs and
also the protocol flow depends on it. This behavior of a real
world RFID system is modeled with a sophisticated simulation
tool written in Java. The communication between the classes
is thread-based and is therefore well suited to simulate the
communication in real world RFID systems. Figure 2 shows
the concept of this Java model. Each component of an RFID
system corresponds to a class in Java.

HostApplication
Reader

Commands
TransmissionLine

Counter

Java
Model

ISOTags
EPCTags

Reader Tags
Real

World
Host

Data
Energy

Fig. 2. Java Model of RFID System.

The Reader class provides reader requests, which are used
by the HostApplication class to perform a protocol flow,
programmed by the user. Here, the authentication protocols are
embedded. The TransmissionLine class broadcasts the reader
requests to all tags and evaluates the answers. The resulting
response is passed over to the Reader and the HostApplication.
Attached to the TransmissionLine is a Counter, which is able
to exactly calculate the elapsed time during a protocol flow.
With this counter, the performance of the different protocols
can be evaluated. Before startup, the user can determine the
system specification parameters, like the number of tags in the
field and the dynamic behavior and so on.

At startup, a random ID is created for each tag and the
protocol is executed until each tag is in quiet state. A protocol

flow can be repeated with the same parameter setting. For one
tag, the execution time is equal for all iterations. Due to the
random IDs and the resulting arbitrary protocol flow, flows
with more than one tag result in different execution times.
From this values, an average protocol execution time can be
determined.

B. ISO-18000 Standard Reference Protocol

The ISO/IEC 18000-3 standard [6] defines physical and
procedural communication mechanisms between reader and
tag using a frequency of 13.56 MHz. The reader talks first and
sends a request. Tags, that are addressed can answer to this
request. A request consists of an SOF (Start of Frame), flags,
command code, parameter and data field, CRC value, and an
EOF (End of Frame). Responses to requests also consist of
an SOF, flags, parameter and data field, CRC value, and an
EOF. In this paper, we limit ourselves to a description of some
relevant concepts. For a more detailed description of physical
parameters and communication mechanisms see [6].

Before sending requests to particular tags, the reader has
to determine, which tags are in the field. For this purpose, it
sends an inventory request, which is a mandatory request in
ISO/IEC 18000-3. In most applications, there is more than one
tag present which sends a response, and collisions are likely
to occur. With an anti-collision mechanism, the reader has to
find out the ID of each tag. Then, various requests can be sent
by addressing one tag with its unique ID. A stay quiet request
(also mandatory) has to be sent to the tag to remove the tag
from the anti-collision procedure.

The minimal protocol to get the IDs of the present tags is
a inventory request, followed by a stay quiet request for the
identified tags. This protocol is used as reference protocol for
the authentication protocols described in the next subsection.
Figure 3 shows the reference protocol flow for one tag. This
protocol requires in total 10.228 ms (this was calculated with
timing constants from the ISO standard: 1-out-of-4 coding, 1
subcarrier, and 100% modulation).

R: inventory

1.62368 ms

Time to answer

0.3209 ms

T: ID

3.92704 ms

Time to next
request

0.3092 ms

R: stay quiet

3.73824 ms

Time to next
request

0.3092 ms

Fig. 3. ISO 18000 Reference Protocol.

First the reader starts with an inventory request without
mask (SOF, 5 bytes, EOF). This lasts 1.62368 ms (this value
was calculated with timing constants from the ISO standard: 1-
out-of-4 coding, 1 subcarrier, and 100% modulation). Then the
tag has to wait 0.32090 ms before sending the answer (TTA =
time to answer). The tag transmits its ID (SOF, 12 bytes, EOF),
which requires 3.92704 ms. The next request can be at the
earliest 0.3092 ms after getting the tag response (TTR = time
to next request). The stay quiet request from the reader (SOF,
12 bytes, EOF) needs 3.73824 ms. Here, no answer is expected
and the reader has to wait 0.3092 ms before sending the next
request (TTR). So, this protocol requires in total 10.22826 ms.

With more than one tag and/or the 16 slots variant (where
tags have 16 time slots available to answer to an inventory



request) of the anticollision protocol, the timing can no longer
be exactly determined, because the answering sequence and
the time, when an unique ID is found depends on the IDs
of the tags in the field. Therefore, the timing is estimated
with the Java model described in subsection V-A. The average
execution time for the reference model is about 359 ms which
was evaluated running 40 simulations.

C. Authentication Protocols for RFID

By knowing the IDs of the tags in the field, the reader can
send custom requests (the message formats can be found in
[6]) to a tag by addressing it with its ID. In that way, the
following authentication procedures are embedded into the
protocol. All presented authentication protocols work with
the AES-128 algorithm [10]. The goal of the new protocols
is to prevent the security threats for RFID systems. These
threats are forgery of tags, prevention of unwanted tracking,
and unauthorized access to the tag’s memory.

Protocol 1: Tag Authentication with Known ID. Here, the
tag authenticates itself against a reader. The origin of the tag
can be proved and forgery is prevented. The protocol works
as follows (we denote the concatenation of values by|):

Reader→Tag : InventoryRequest

Tag→Reader : ID

Reader→Tag : AuthRequest | ID | RR

Tag→Reader : EK(RR | R?
T ) | R?

T

Reader→Tag : StayQuietRequest

The reader sends an inventory request, the tag answers with its
ID. The reader sends an authentication request, addressed with
the ID of the tag (8 bytes). It contains a nonce, generated by
the reader (RR, 8 bytes). The tag encrypts the nonce (maybe
padding is necessary) with the secret key and sends the result
back to the reader, which can then verify the result. At last,
the reader sends a stay-quiet request.

In our protocol, only the first 8 bytes of the encryption
result are sent, see [5]. Nevertheless, the number of bytes can
be changed in other applications. To avoid chosen-plaintext
attacks, i.e. that an attacker can fix the value ofRR and can
therefore control the input for the encryption, the tag can itself
generates a nonce (RT , 8 bytes) to “hide” the challenge. The
use ofRT is optional and marked with?.

The whole protocol for one tag requires 20.940 ms (optional
variant: 23.357 ms). For 20 tags, 16 slots, and 40 simulations,
the average protocol execution time was 583 ms (optional
variant: 624 ms). The tag needs to do AES encryption, and
requires a nonce for the optional variant.

Protocol 2: Tag Authentication with Nonce.This protocol
can be used for proof of origin of the tag and additionally
prevents tag tracking. The tag takes part in the anticollision
algorithm with a random ID (RT , 8 bytes), which is generated
when the tag enters the reader field and stays constant during
the whole time when the tag is in the field. All addressed

requests are done with the random numberRT used in the anti-
collision procedure. In that way, tracking can be prevented.

Reader→Tag : InventoryRequest

Tag→Reader : RT

Reader→Tag : AuthRequest | RT | RR

Tag→Reader : EK(RR | ID)

Reader→Tag : StayQuietRequest

The protocol works like the above described protocol, but uses
a random ID for tracking prevention. The challenge from the
reader (RR, 8 bytes) is concatenated with the tag’s ID for
encryption. All 16 bytes of the result have to be sent, because
the reader has to extract the tag’s ID by decrypting the answer.

The protocol for one tag requires 23.357 ms. For 20 tags,
16 slots, and 40 simulations, the average protocol execution
time was 622 ms. The tag needs AES encryption and a nonce
generation mechanism. Only an authorized reader (knowing
the secret key) can reveal the tag’s ID.

Protocol 3: Reader Authentication. This method is used
for authenticated access to the tag’s memory. The tag requests
an authentication from the reader before it reveals its ID. The
tag takes part in the anti-collision algorithm with a random
ID (RT , 8 bytes). All further requests are addressed with
RT which prevents tracking of the tag. The authentication of
the reader works again using the encryption algorithm. After
authorization of the reader, the tag sends its ID in plain text and
grants the reader access to the memory. Attackers can get the
ID by passively listening to the communication, although they
are not able to initiate it. Another problem could be hijacking
of an authorized connection. It has to be analyzed if this is a
realistic security threat for real-world applications.

Reader→Tag : InventoryRequest

Tag→Reader : RT

Reader→Tag : ReaderAuth | RT | EK(RT | R?
R) | R?

R

Tag→Reader : ID

Reader→Tag : StayQuietRequest

When answering to the inventory request, the tag indicates
with a flag that the reader has to authenticate itself. The reader
answers to the challenge (RT , 8 bytes) and sends a request
to reveal the tag’s ID. To avoid a chosen-plaintext attack, the
reader can generate a nonceRR and combine it withRT before
answering the challenge (optional).

The protocol for one tag requires 20.940 ms (optional
variant: 23.357 ms). For 20 tags, 16 slots, and 40 simulations,
the average protocol execution time was 580 ms (optional
variant: 624 ms). The tag needs a nonce generator and AES
encryption.

Protocol 4: Mutual Authentication. In mutual authentica-
tion, both parties authenticate themselves against each other.
All three security threats (unwanted tracking, unauthorized
memory access, and forgery) can be prevented. Like in the



former protocols the tag answers the inventory request with
a nonce (RT , 8 bytes), and requests authentication from the
reader. The reader answers the challenge and sends another
challenge (RR, 8 bytes) for the tag. The tag answers the
reader’s challenge and both are authenticated. The ID is never
sent in plain, so unwanted tracking is prevented.

Reader→Tag : InventoryRequest

Tag→Reader : RT

Reader→Tag : MutualAuth | RT | EK(RT | RR) | RR

Tag→Reader : EK(RR | ID)

Reader→Tag : StayQuietRequest

The protocol for one tag requires 25.774 ms. For 20 tags,
16 slots, and 40 simulations, the average protocol execution
time was 680 ms. The tag needs to do AES encryption, and
requires a nonce generator.

Protocol 5: Mutual Authentication with Key Exchange.
This protocol is an extension of protocol 4. A secret key is
exchanged to guarantee further secure communication.

Reader→Tag : InventoryRequest

Tag→Reader : RT

Reader→Tag : MutualAuth | RT | EK(RT | SKR)

Tag→Reader : ESK(SK | ID)

Reader→Tag : StayQuietRequest

The secret keySK contains 16 bytes, whereasSKR is
only 8 bytes long.SK has to be derived fromSKR, for
exampleSK=SKR xor RT | SKR. In the last response, the
tag confirms the secret key. This key can be used for further
(encrypted) communication. The protocol for one tag requires
25.774 ms. For 20 tags, 16 slots, and 40 simulations, the
average protocol execution time was 676 ms. The tag needs
to do AES encryption and decryption, and requires a nonce
generation mechanism.

Protocol Performance and Usage of Different Keys.The
first three presented protocols all require at most 23.357 ms
for one tag and about 625 ms for 20 tags. Protocol 4 and 5
require 25.774 ms for one tag and about 680 ms for 20 tags.
The overhead factor (compared with the reference protocol)
lies between 1.7 and 2.5. The byte count of nonces can be
varied, depending on the security requirements of a system. All
described protocols work with one global key. To prevent this,
different secret keys could be used for example for different
product classes. The tag holds only one key and can indicate
the use of the correct key to the reader, which can hold various
keys. One or more bytes can provide the selection of the
correct key. Further investigation has to be done regarding key
management and nonce generation, but this is out of scope of
this paper.

VI. I NTERLEAVED AUTHENTICATION PROTOCOL

The performance data mentioned above is only true, if the
used cryptographic primitive (AES) is able to calculate its

result during the fixed time to answer (TTA = 0.3209 ms,
defined in ISO/IEC 18000-3 [6] as the interval between the
end of a request an the start of a response). For the module
described in [3], which meets energy and size constraints
for use on RFID tags, this assumption does not hold. The
calculation time for AES with this module needs about 10 ms.
Nevertheless, authentication for RFID is possible. We present
a method how authentication can be done with a cryptographic
primitive, which requires more calculation time than TTA. For
this purpose, authentication is split into two parts. The first part
is the authentication request, which tells the tag to encrypt
the challenge and does not expect any response. The second
part is the response request, which collects the authentication
response, if the result is available.

For the tag authentication with known ID, the interleaved
version of the authentication protocols works like shown in
figure 4 (the inventory request and stay quiet request are
omitted in the picture). During the idle time, the reader is not

R: auth req.

8.87360 ms

TTR

0.3092 ms

R: resp. req.

4.04032 ms

TTA

0.3209 ms

T: auth. resp.

6.0416 ms

T: calculate AES

~300 ms

idle
add.
idle

Fig. 4. Interleaved Protocol with 1 Tag

active. The additional idle time indicates the period, where the
reader is idle and the tag has already stopped its calculation. In
the best case (when the response request is sent right after the
calculation of AES has stopped, i.e. the additional idle time
is 0), the authentication protocol for one tag requires about
40 ms (with inventory and stay quiet). This time is strongly
determined by the calculation time for the AES. For one tag,
the timing overhead is very large, but with more than one
tag, the reader can use the idle time (while the tag calculates
the AES) to send authentication requests (or other requests)
to other tags. The other tags start their calculation and the
calculation results can be collected (after a certain time) one
after another. This mechanism is outlined in figure 5.AR

R:
AR

T1: calculate AES

R:
AR

T2: calculate AES

T3: calculate AES

R:
AR

R:
RR

T1:
R

R:
RR

T2:
R

R:
RR

T3:
R

AII

Fig. 5. Interleaved Protocol with 3 Tags

means authentication request,RR means response request and
R is the tag’s response.I is the idle time, where the reader
is inactive,AI is the additional idle time, where neither the
reader nor the tag is active. The grey areas indicate TTA or
TTR. The calculation of the AES is pipelined. The shown
model assumes, that the time for collecting one answer exceeds
the offset between the calculation start for two tags, i.e. that
the response for the next response request is ready before
the response request is sent. This assumption holds in most



of the cases: the offset between two tags isAR+TTR and
the time for the response collection isRR+TTA+R+TTR. The
number of data bytes forAR andRR+R are in general similar,
but the overhead for communication is higher in the second
term (TTA and communication overhead bytes of R). The stay
quiet requests for all tags are issued after the collection of the
authentication results.

While the tags are calculating the AES result, they do not
listen to the reader. So, they are excluded from the inventory
process. Therefore, the reader can even send an inventory
request during this time to get new IDs from other tags. It has
to be made sure, that the inventory request is issued before the
tags stop their calculation. The reader has to decide, when to
start to collect the results from the tags. It can send a response
request (polling) and if it gets no response, it can decide to
send other requests and try again after a certain time. It is up to
the reader, to find the optimal strategy for handling interleaved
protocols.

Nevertheless, an estimation of the performance for inter-
leaved protocols can be given. The total time (T ) for handling
the authentication requests for a certain number of tags (N),
whereN∗(AR+TTR)<AES+AR is calculated like this:

T=AR+AES+AI+N∗(RR+TTA+R+TTR). (1)

For N∗(AR+TTR)>=AES+AR the following equation is valid:

T=N∗(AR+TTR)+AI+N∗(RR+TTA+R+TTR) (2)

AR is the time for the authentication request.AES is the
time required for AES calculation of one tag (10 ms for the
AES module described in [3]).RR is the response request
(4.040 ms).R is the tag’s response.

The worst case for timing occurs, when only one tag
has to be authenticated. The best case for the total protocol
execution time occurs, whenAI=0 and the total idle time of
the reader can be filled with authentication requests, i.e. if
N∗(AR+TTR)>=AES+AR. In protocol 1, this condition holds
for N>=3 (AES=10ms). The total time for execution of the
interleaved authentication protocol 1 for 3 tags is about 45 ms.
Non-interleaved authentication for 3 tags takes about 32 ms,
i.e. that the interleaved version of protocol 1 takes about 1.41
times the time of the non-interleaved version. For the worst
case (only one tag is authenticated) the timing ratio is about
2.3. The more tags are authenticated in parallel, the better
is the timing ratio between interleaved and non-interleaved
version, especially for cryptographic algorithms with very long
calculation times. ForN∗(AR+TTR)>=AES+AR the timing
ratio reaches its minimum. Figure 6 shows the timing ratios

Min.

Max.

Prot. 1, 3 Prot. 2 Prot. 4, 5

1.41

2.30

1.33

2.07

1.28

2.55

Fig. 6. Interleaved Protocol Performance.

(interleaved version vs. non-interleaved version) for the best-
case and worst-case estimations of the five protocols. In

protocols 4 and 5 the tags need to calculate the AES algorithm
two times. Therefore, the AES requires 20 ms. The presented
figures only consider the authentication part of the protocols
and omit the inventory and stay quiet requests. The overhead
factor for the interleaved version lies between 1.28 and 2.55
(for AES with 10 ms for protocol 1, 2, and 3 and AES with
20 ms for protocol 4 and 5) depending on the protocol and the
number of parallel authentication processes.

VII. C ONCLUSION

In this paper we have challenged the believe that strong
authentication is infeasible with RFID tags in practice. By
using strong authentication threats such as forgery of tags,
unwanted tracking of tags, and unauthorized memory access
of tags can be defeated.

We have described five symmetric-key authentication pro-
tocols (based on ISO/IEC 9798-2) with different security
features all conforming to ISO/IEC 18000-3. Our protocols
are based on symmetric-key encryption. Therefore, they can
be used with the AES algorithm, which can be implemented
such that the energy constraints of Class 2 RFID systems are
met. In order to comply to the timing constraints (in particular
to the TTA), we have suggested interleaved versions of the
authentication protocols. With a sophisticated Java simulation
tool we have analyzed a system with one reader and several
tags performing the authentication protocols. This simulation
has shown that there is only a small penalty for authentication
in a real world scenario. The interleaved protocols take on
average 1.28 times to 2.55 times longer than a non-interleaved
authentication protocol. The non-interleaved authentication
protocols take between 1.7 to 2.5 times longer than the refer-
ence protocol without authentication. Summarizing, we have
presented a concept for strong symmetric-key authentication
for Class 2 RFID tags, which can be implemented in practice
today.
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1 Fraunhofer Institute of Microelectronic Circuits and Systems
Finkenstrasse 61, 47057 Duisburg, Germany

2 Integrated Systems Institute at the University of Dortmund
Emil-Figge-Strasse 68, 44227 Dortmund, Germany

Abstract

Apart from pure identification systems, transponder systems with embedded
sensors gain increasing importance. In contrast to low-end Radio Frequency
Identification (RFID) systems these transponders usually require more complex
protocols which need to be adjusted to a specific application. In this contribution
the demanded flexibility is achieved by using the 8-bit microcontroller IMS3311.
In order to guarantee privacy and security of transferred information, it is
essential that transmitted data is encrypted by a strong algorithm. Therefore, the
Advanced Encryption Standard (AES) is used. The main focus of this paper is the
development of an area-efficient AES coprocessor which accelerates the processing
of the controller’s ciphering tasks. The AES unit requires only 2168 logic gates
and takes less than 650 clock cycles for either encryption or decryption of a 128-bit
block.

1 Introduction

The market for Radio Frequency Identification (RFID) transponder systems has
grown considerably in the last years, as they are introduced into various new
application areas. Such transponder systems usually consist of a reader device and
the RFID chip or tag.

In the most simple implementation, a tag holds an identification code which can be
requested by a reader. Data is transmitted via an electromagnetic field which is
generated by the reader device. Possible applications for low-end RFID tags are
the identification of objects, animals or persons. Hence, the tags can be used as
replacement of barcodes in shops, for the observation of cattle in agriculture or for
the identification of luggage at the airport. Often, these tags contain additional object
information, e.g. the date of expiry in barcode chips.

More complex transponder chips require bidirectional data transmission and complex
protocols between reader and transponder. These chips can also contain integrated
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sensors, and they often provide in-field programmability of an internal EEPROM.
Possible applications for complex tags range from temperature measurements in
refrigerated transports to tire pressure sensors in vehicles.
Different applications require different protocols. In order to enhance the flexibility
of a transponder and consequently reduce development cost, it is important that
diverse protocols can be processed by the same chip. The needed flexibility can be
provided by a small and efficient microcontroller system. In this contribution the 8-
bit µC architecture IMS3311 is used, which was developed at the Fraunhofer IMS in
Duisburg and is well-suited for the requirements of transponder systems.

RFID tags are called passive transponders if they obtain their energy from the
reader’s electromagnetic field [13]. Passive tags are distinguished from transponders
with separate energy sources like batteries or solar cells, which are referred to as
active transponders. For both active and passive transponders low power dissipation
is important, as the energy provided by field, battery or solar cell is limited.

There are several fields that are very sensitive with respect to privacy and security,
e.g. chips with biometric identification data or chip implants in medical technology.
It is necessary that communication between reader and tag is encrypted within
these systems. A reasonable choice of a cryptographic algorithm is the Advanced
Encryption Standard (AES).
Especially if the tag remains in the electromagnetic field for a short time, it is
important that enciphering of data is accelerated by a cryptographic unit. A reduced
number of cycles for the execution of the protocol can also be used to lower clock
frequency and power dissipation, respectively.
The gate count of the system and thus the AES unit needs to be minimized in order
to reduce unit cost and power dissipation. This paper focuses on the development of
a novel area-efficient AES coprocessor, which accelerates the microcontroller system
in encryption and decryption of data and avoids that those tasks become a bottleneck
within the transmission protocol. By sharing storage resources with the controller the
coprocessor significantly reduces its gate count in comparison to prior architectures.

Section 2 gives an overview of the current state of research. Furthermore, it
introduces the general architecture of the IMS3311 µC. The architecture of the
AES coprocessor and the most significant strategies for reduction of chip area
are presented in section 3. A comparison of the proposed architecture with prior
implementations is presented in section 4. Finally, concluding remarks concerning
the developed system are given.

2 Architecture Considerations
Figure 1 represents the architecture of a transponder chip. The main part consists
of the microcontroller system, an analog frontend and an antenna. In addition, the
system can be extended by an EEPROM, sensors, a battery or an oscillator. The focus
of this paper will be the optimization of the µC system, which contains the controller
IMS3311, the area-efficient AES coprocessor, a RAM and a program ROM. After an
overview of the state of research, the controller system is introduced.



Microcontroller System with Area Efficient AES Coprocessor 3

IMS3311
µC
+

Peripherals

AES
Coproc

Prog
ROM

RAM

µC System

EEPROM

analog
Frontend

Sensors Battery

AD-Converter

Transponder
Architecture

Antenna
Clock

Data

VDD

Quartz

Figure 1: Transponder chip architecture with cryptographic coprocessor.

2.1 Related Work

Research and industry offer several stand-alone AES ASICs and IP cores [1] [5] [9]
[14]. Few AES units are implemented in combination with a µC. Furthermore, the
existing controller systems with on-chip AES unit usually are 32-bit architectures
which have too high power and area requirements for RFID applications. One of
these complex architectures is the 32-bit Freescale MCF5235 [7] that contains a
cryptographic coprocessor supporting AES, DES and Triple-DES.
There are even few stand-alone AES cores that meet the requirement of a low gate
count. Feldhofer [5] recently published the implementation of an AES encryption-
only core which is optimized for the operation in RFID tags. However, the system
proposed in [5] does not support complex bidirectional protocols associated with
sensor transponders. The system developed in our contribution bridges the gap
between costly 32-bit µC architectures and specialized but inflexible ASICs.

2.2 IMS3311 µC Architecture

The small and efficient controller IMS3311 [6] is instruction set compatible with
the Motorola M68HC11 and well-suited for transponders or embedded systems. Its
register file contains two 8-bit accumulators, as well as two 16-bit index registers,
a program counter and a stack pointer. Beside the regular 8-bit operations, the
instruction set of the IMS3311 supports several operations which work with 16-bit
operands.

The 8-bit data bus connects the peripherals in a ring, which has the advantage
over the tri-state bus concept that the load is distributed over multiple drivers.
Furthermore, the ring bus architecture can be synthesized simply. Possible
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Figure 2: µC interface to AES coprocessor.

peripheral devices on the ring bus are interfaces like SPI, SCI, PIO or CAN. In
addition, the system usually includes a clock controller and a JTAG test controller.

In order to allow the extension of the controller with a cryptographic unit, the
standard IMS3311 had to be equipped with a slim coprocessor interface. This
interface constitutes a significant difference between the IMS3311 and the M68HC11.
The microcontroller provides special opcodes for coprocessor instructions. Thus, the
AES unit is controlled by dedicated cryptographic instructions. The simplified
interface between controller and acceleration unit is presented on the left side of
figure 2, while the transfer of one instruction is depicted on the right side. Data
and instruction bytes are transmitted via the OpD (opcode and data) bus to the
coprocessor. Whenever the controller receives a new byte from its data bus, it
automatically forwards this byte to the OpD bus with the next rising clock edge.
One of these bytes is the µC pre-byte, which contains the information if the current
instruction is a coprocessor command. This byte is exclusively decoded by the
controller.
In the following cycle the instruction’s basic opcode byte is transmitted by the OpD
bus to the AES unit. It is stored in the internal coprocessor register CpOpc after the
rising clock edge, if the basic opcode strobe signal OpBas is asserted high. The byte
is subdivided into the following nibbles: One nibble contains information about the
address mode for load/ store instructions or the processing of a branch instruction,
while the other decides about the current operation (e.g. ”decrypt” or ”load”). The
address mode bits are evaluated by the microcontroller. This allows the following
address modes to be used for coprocessor instructions:

• immediate,
• direct,
• extended,
• indexed and
• push to/ pop from stack.

After the basic opcode byte and address bytes, following data bytes may be loaded
into the coprocessor, or data from the coprocessor may be stored into memory.
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//++++++++++++++++ ENCRYPTION ++++++++++++++++//
State = Plaintext;
for(i=0; i<9; i=i+1)
{

AddRoundKey(State, ExpKey[i]);
SubBytes(State);
ShiftRows(State);
MixColumns(State);

}
AddRoundKey(State, ExpKey[9]);
SubBytes(State);
ShiftRows(State);
AddRoundKey(State, ExpKey[10], Ciphertext);

Code Example 1: Equivalent encryption structure of the AES.

3 AES Acceleration Unit

Based on the description of the µC’s interface to the AES unit, the internal structure
of the coprocessor is developed. Since RFID chips demand a very small die size,
the main methods for the reduction of chip area are introduced. As area reduction
considers the algorithm’s structure and operations, an overview of the AES is given.

3.1 Advanced Encryption Standard

The AES [4] is a block cipher with an input and output block length of 128 bits.
The algorithm is capable of using keys of a length of 128, 192 and 256 bits. For the
presented implementation, a key-length of 128 bits is chosen which is assumed to be
secure against state-of-the-art cryptanalytic attacks. The key and input block length
of 16 bytes implies a round number of 10.
The encryption structure used for the presented implementation is described by the

pseudo code in code example 1. This representation is equivalent to but more regular
than the representation in the standard, as for a hardware implementation just
MixColumns has to be replaced by AddRoundKey in the final round. For decryption
the operation order has to be reversed and the presented operations have to be
replaced by their inverse operations. The AddRoundKey operation is the same for
both encryption and decryption. For decryption the SubBytes operation is replaced
by InvSubBytes, MixColumns by InvMixColumns and ShiftRows by InvShiftRows.
The algorithm consists of the following operations:

• The AddRoundKey step performs a bitwise XOR operation of the current state
and the round key.

• SubBytes replaces each byte of a state by applying an S-Box. The S-Box is the
non-linear step of the algorithm. InvSubBytes consists of the inverse S-Box
which is again applied byte-wise to the current state.

• The MixColumns step performs a bricklayer permutation on four bytes of
the state. These bytes form a state’s column. Each MixColumns operation
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Figure 3: Internal structure of the AES coprocessor.

is a modular multiplication with a fixed polynomial. InvMixColumns is the
inverse operation of MixColumns. These operations are usually represented
as multiplication with a 4×4 matrix. An optimized implementation with a
combined circuit for encryption and decryption is demonstrated in section 3.4.

• ShiftRows is a byte transposition step which cyclically shifts four selected bytes
of a state. These four bytes are called a row. InvShiftRows is the inverse
operation of ShiftRows.

The key expansion generates a 16-byte round key for each of the rounds. The round
keys can be either generated on-the-fly during ciphering or they can be expanded
before execution of the cipher. On-the-fly expansion uses less memory. However, in
this contribution key expansion is done before encryption or decryption for several
reasons: Round key generation prior to ciphering leads to a noticeably higher
throughput, since the key can remain in memory for the next block. Furthermore, on-
the-fly key generation for decryption starts with the last round key and is developed
back to the symmetric key, so the last round key would have to be generated and
stored before decryption anyway. Finally, for encryption and decryption the same
expanded key and thus the same round key generation algorithm can be used.

3.2 Coprocessor Architecture

Figure 3 depicts the internal coprocessor structure. The decoder and interface unit
controls the communication with the IMS3311 core and its memory. In addition, it
generates initiate signals for the control unit. In particular, these signals determine
the currently valid operation, so a possible decoder output is ”InitEncrypt”.
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The control unit generates an adequate control sequence for the current instruction
using hard-wired logic. The core of the control unit forms a global finite state machine
(FSM) which initiates further local FSMs for the execution of the AES operations.
Since the local FSMs are independent from each other, some of the AES operations
can be processed in parallel.
The output signals of the state machines initiate the address generation and the
execute unit. While the execute unit implements the combinatorial logic for all AES
operations, the address generation unit provides an interface to the microcontroller’s
internal memory.
The register file consists of the general purpose (GP) and the base address registers.
General purpose registers store the temporary results, whereas base address
registers can be regarded as pointers to the controller’s memory (see section 3.3).

3.3 Coprocessor Interface to µC RAM

The minimization of the gate count is essential for commercially viable realizations
of transponder chips. A main approach of this contribution is to minimize the
number of general purpose registers and thus flipflops without loosing too much of
the performance. Especially flipflops contribute heavily to the chip’s gate count, as
they use an area of about six gate equivalents (GE). If the complete input and key
blocks had to be stored in internal flipflops, this would already require 256 flipflops
- more than the IMS3311 microcontroller needs itself. Hence, an input block is not
processed in parallel as in [14], but it is encrypted and decrypted in blocks of 32 bits.
Temporary results are stored in RAM.

This strategy has already been applied to FPGA designs [2]. Furthermore, the AES
core introduced in [5] uses an internal RAM. However, a small internal RAM is very
expensive. Especially in small memories the column and row decoders contribute
significantly to memory area. As a result small RAMs tend to be uneconomical.
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This leads to the main advantage of our acceleration unit: The coprocessor does
not need internal memory, but shares RAM and address space with the controller.
Memory access is controlled by the coprocessor’s internal address generation unit.
In order to achieve higher flexibility, it provides several base address registers, as
illustrated in figure 4. These registers serve as pointers to RAM or ROM addresses
and can be used to determine the position of the input, output or key block. Start
addresses are aligned to 16-byte boundaries which is the size of one block. The
base address registers are loaded by a coprocessor load instruction making use of
the controller’s address modes. In addition, there are constant pointers to the RAM,
e.g. for the start address of the 16-byte scratch pad block for temporary results.

The address generation unit allows several further features, which enhance
throughput and programming convenience: Two additional instructions, ECRI
(”encrypt and increment”) and DCRI (”decrypt and increment”), are provided for
ciphering of successive blocks. They support encryption and decryption of large blocks
by executing just one instruction repeatedly. At the end of these instructions, the
input and output base address registers increment and automatically point to the
next block in memory.

The most compact interface between controller, coprocessor and RAM supports
sequential processing of coprocessor and µC instructions. The µC stops data bus
accesses during coprocessor activity. The AES unit becomes bus master and gets
access to ROM or shared RAM. After the coprocessor has terminated the current
instruction, the µC becomes bus master again and loads the next instruction from
memory.
With few additional gates this sequential interface can be extended to a hybrid
interface. The hybrid interface additionally allows processing of controller and
coprocessor instructions in parallel. Special instructions allow switching between
parallel and sequential behavior. Furthermore, the processing status of the current
coprocessor instruction can be requested by the µC. The results in section 4 are based
on the sequential interface. A system with a hybrid interface requires 208 additional
gates.

3.4 Optimized Implementation of the AES Operations

As mentioned in section 3.2, the AES unit processes only four bytes at once, namely
those bytes that are needed for one 32-bit (Inv)MixColumns operation. The required
bytes are loaded from the memory’s input array in the first round and alternating
from the memory’s scratch pad or output array in the other rounds. During DataFetch
they are sequentially loaded into the four general purpose registers RA − RD. The
ShiftRows operation can already be processed by DataFetch, if loading of RA − RD

considers the cyclic byte shifts (also discussed in [2]). The timing diagram in figure
5 presents the flow for one column of a regular encryption round. After DataFetch
the steps AddRoundKey, SubBytes and MixColumns are executed in a pipeline-like
structure. The temporary results after a column calculation are written to the 16
byte scratch pad or output array during the WriteBack state.
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Figure 5: Timing diagram of a regular 32-bit AES encryption round transformation.

Usually the SubBytes and InvSubBytes steps are performed by using 256 byte LUTs
for each operation. If the LUTs were located in the µC’s program ROM, this operation
occupies the µC’s data bus, which is already the bottleneck, for 16 more clock cycles
per round. Hence, the S-Box and the inverse S-Box are implemented using hard-
wired logic. Rijmen [12] proposes a method to implement the S-Box and the inverse
S-Box by using combinatorial logic, which is based on the design of logic circuits for
the multiplicative inverses in composite fields (see also [10] [11]). In this contribution
the logic for the multiplicative inverses in GF((24)2) is shared by encryption and
decryption. Both substitute operations are pipelined and executed in two clock cycles.
Four (Inv)SubBytes instances would lead to an enormous gate count, so the substitute
operations are processed byte-wise sharing one instance.

MixColumns and InvMixColumns are the only steps that process four bytes in
parallel. While MixColumns is executed within one clock cycle, InvMixColumns is
processed in two cycles. An 8-bit implementation of MixColumns already takes 7
cycles [5]. InvMixColumns is much more complex and is assumed not to take less
cycles. That is why the proposed AES unit processes four bytes in parallel. For the
InvMixColumns operation Barreto’s transformation [3] is used:
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(3.1)

The InvMixColumns matrix can be decomposed into the MixColumns matrix and
a matrix which just contains the 04 and 05 elements. The implementation
of the combined operations is presented in figure 6. Each of the GP registers
RA − RD contains one column byte. In the first cycle of InvMixColumns (IMC),
multiplication with the matrix on the right side is performed, while in the second
cycle multiplication with the MixColumns (MC) matrix takes place. Results are
stored in RA −RD again. A constant multiplication with 02 is called xtime() function
in [3] and requires 3 XOR gates, whereas the constant multiplication with 04 needs
5 XORs. Only the operations with the grey gates were added to the MixColumns
circuit in order to support InvMixColumns as well, which increases circuit size by
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Figure 6: Implementation of the MixColumns and InvMixColumns step.

just 42 gates. The combined column implementation only takes 166 XOR gates. In
comparison, the optimized solution introduced by Zhang and Parhi [15] requires 264
XOR gates.

4 Implementation Characteristics
The introduced µC and coprocessor modules were synthesized on a 0.5µm CMOS 3-
metal-layer process. Table 1 summarizes the synthesis results. The total results were
achieved by a flat synthesis, while the values of the internal coprocessor blocks result
from a hierarchical synthesis.
The entire circuit requires only 2168 gates for encryption, decryption and key
expansion. Since the coprocessor shares the RAM with the microcontroller core, it
does not require an internal RAM. After the termination of a coprocessor instruction,
the µC can write to the RAM addresses, which were used by the coprocessor, again.
The RAM area used by the AES unit is listed in brackets in table 1. AES unit and
microcontroller together have a logic gate count of less than 5300 GE. Additional area
for microcode and program ROM, RAM and the desired peripherals has to be added.

A comparison of the proposed coprocessor with other AES cores is shown in table 2.
The developed AES coprocessor is the only solution that offers encryption, decryption
and key expansion with a low gate count. Feldhofer [5] introduced an encryption-only
core which requires only a small amount of logic gates. The high gate count of the
used internal RAM results in a total number of 3595 GE. The other AES units
are optimized for higher throughput. Hence, their large gate count makes them
inapplicable for the operation in transponder systems.
Only the presented solution is implemented in combination with a flexible 8-bit
µC system. A software implementation of the AES algorithm is described in [8].
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Characteristic Unit/ Block Value
Gate Count Coproc AES total 2168 GE

Coproc Execute Unit 54.8 %
Coproc Register Unit 22.0%
Coproc Decoder/ Control Unit 13.6%
Coproc Address Generation 9.6%
µC RAM area used by Coproc (921 GE)
Coproc AES + used µC RAM area (3089 GE)
IMS3311 µC Core 3110 GE
Microcode ROM (2 KB) 2456 GE

Cycle Count Encryption (128-bit) 645
Decryption (128-bit) 645
KeyExpansion (128-bit) 363

Table 1: Characteristics of the developed system.

The used Freescale M68HC05 architecture is comparable to the IMS3311. For
encryption, it needs about 10 times more clock cycles than the AES unit proposed
here, for decryption it is about 15 times slower.

5 Conclusions
This contribution introduced a microcontroller system that is optimized for the
operation in low-cost applications. It is well-suited for RFID transponder chips
that are used for data logging tasks. The implemented system contains the 8-
bit microcontroller IMS3311 and an area-efficient AES coprocessor which supports
both encryption and decryption. An instruction based coprocessor interface was
introduced, which extends the µC’s instruction set with commands for the AES
acceleration unit. In addition, it was shown how the microcontroller’s resources can
be shared in order to minimize coprocessor area. The proposed AES implementation
requires only 2168 gates and takes less than 650 clock cycles for encryption or
decryption of a 128-bit input block.

AES Unit Supports Gate Count Cycle Count Cycle Count
E/D/RK1 E/D (RK+E)/(RK+D)

Proposed AES Unit +/+/+ 2,168 GE 645/645 1008/1008
(incl. Shared RAM) (3,089 GE)
Feldhofer [5] +/–/+ 3,595 GE –/– 1016/–
Amphion CS5265 [1] +/+/+ 25,000 GE –/– 44/44
Verbauwhede [14] +/–/+ 173,000 GE –/– 10/–

Table 2: AES core comparison considering gate count and clock cycles.
1E=Encryption, D=Decryption, RK=Round Key Generation
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Abstract. Radio frequency (RF) based cryptographic tokens have been
a booming market in the past years. These low-cost devices are in use for
security services such as ticketing, access control, and electronic payment.
The security services often require that the owner of the device is not able
to read out or modify the secret data (cryptographic keys and unique
IDs) stored.
Side channel cryptanalysis includes smart methods to extract crypto-
graphic keys just by observing its physical leakage during computation.
EM radiation that is emitted by crypto devices can be used for Differen-
tial Electromagnetic Analysis (DEMA). Previous work on EM analysis
has been done on self programmed microcontrollers and FPGAs. For our
analysis we use a Mifare DESFire card that is supplied by an RF inter-
face. We present the measurement set-up and reconsider the properties
of electric and magnetic field coupled antennas. As preparation step for
DEMA, the authentication procedure of the DESFire card was partially
revealed. By using the efforts described in this work DEMA was not suc-
cessful to extract cryptographic keys. Further directions are given that
yield to more powerful conditions for applying DEMA against RF based
crypto devices.

1 Introduction

Radio Frequency Identification (RFID) systems are heavily promoted and con-
tinue to become more and more pervasive. An RFID system consists of an RFID
transponder (RFID card) and an RFID card reader (see Figure 1). The RFID
transponder is supplied by the card reader.

In the security context, privacy aspects (see, e.g, [9]) are widely discussed as
consumer tracking becomes feasible using RFID based technology. In the main
security related works RFID is related to extreme low-cost devices that store
unique IDs and transfer them without any cryptographic mechanisms in place.

In [4] an AES hardware implementation is presented for strengthening RFID
transponders by using strong cryptographic mechanisms. Widespread commer-
cial RFID transponders are mainly equipped with weaker cryptographic mech-
anisms. DST transponders produced by Texas Instruments that are used for
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automotive immobilizer systems turned out to have an insufficient key length
once the proprietary cryptographic algorithm is known ([3]). Other commercial
products that are widely used for applications such as ticketing are also equipped
with a proprietary cipher which makes an independent security analysis hard.

In many applications (e.g., ticketing) the RFID transponder is handed over
to the end user. Therefore, an end user is potentially an adversary who aims
to write tickets at the non-volatile memory of the RFID transponder without
paying. In this case, the adversary has physical access to the cryptographic
module and can apply a full bunch of implementation attacks. Among them side
channel attacks are promising as they act in a passive way and do not lead to a
physical destruction of the RFID transponder.

It was first shown by [6] that EM emanation of a smart card can be used as
side channel information. The terms “Simple ElectroMagnetic Analysis” (SEMA)
and “Differential ElectroMagnetic Analysis” were introduced, in analogy to “Sim-
ple Power Analysis” and “Differential Power Analysis” in [7]. Other contributions
follow as, e.g., [1].

In this work we present an EM analysis at a cryptographic RFID transponder.
For our analysis we use a Mifare DESFire smart card [8]. To our knowledge, this is
the first work in public literature that presents DEMA results at a cryptographic
RFID transponder.

2 EM-Analysis

Our focus is to measure the EM-emanation in the near field of the chip as the
EM-leakage of a RFID tag is very weak. It will not be promising to measure the
radiated EM-wave in the far field also because of surrounding noise.

2.1 Antennas

We used a probe for the electric field, which is mainly built of a small copper-
plate with the size of 4x4 mm. This is nearly the same size as the DESFire
chip.

Antennas that couple to the magnetic field are mainly coils. During previous
work some antennas of this type have been built. An isolated copper wire with a



thickness of 0.2 mm has been turned around a small cylinder with a diameter of
2 mm used as a shaft. Afterwards the shaft was removed and so the air-core coil
was constructed. The two ends of the coils have been sold to a copper core of a
RG-58 coaxial-cable with an impedance of 50Ω. We tried out different coils with
the same wire and the same inner diameter, but with different winding numbers
from 40 up to 800.

In this work we used the RF U-2 near field probe, from the company LANGER
EMV-Technik GmbH, Bannewitz, Germany1. This probe is composed of a small
coil in a plastic mount attached to a calibrated amplifier.

3 Authentication Protocol

The authentication procedure is implemented in the card reader and it is not
known in the public. So our first goal was to analyze the authentication proce-
dure.

For communication between the card reader and the DESFire card a stan-
dardized RFID protocol is used. The reader uses a modified Miller code to send
data to the card. The card responds using a load modulation according to the
Manchester code. For the details of the communication protocol we refer to [5].

A card reader device which has built-in support for the DESFire card was
bought together with some Mifare DESFire cards2 from ACG3.

Some authentication sequences have been performed with different keys that
can be loaded into the reader and the card.

The antenna signal from the reader was recorded using a digital scope. The
recorded data was demodulated in software and so we could extract the plain
communication data between reader and DESFire card.

Using this data we were able to discover the authentication procedure for
different keys in reader kR and card kC as far as it is relevant for DEMA testing.
In the following procedures Enc(x; k) denotes an encryption of data x with a
single DES (or triple DES) key k. Accordingly Dec(x; k) denotes a decryption.

1. To initiate the procedure the card reader sends a request to the card.
2. The card generates a 64-bit random number RC and encrypts this number

with its own secret key kC . This encrypted block 0; B0 = Enc(RC ; kC) is
sent to the reader.

3. The reader generates 64-bit random data RR and decrypts this with its secret
key which becomes block 1; B1 = Dec(RR; kR).
Afterwards, the reader decrypts the 8 byte block 0 received from the card
with its key kR. This results is RC1 = Dec(B0; kR) (which becomes RC if
kC = kR). Now the reader rotates RC1 by 8 bits to the left. The result of
this operation is XORed with B1 and afterwards decrypted with kR. This

1 http://www.langer-emv.de
2 for further information refer to [8]
3 ACG Identification Technologies GmbH, Walluf, http://www.acg.de



result becomes B2. Finally, the reader sends these two 64-bit blocks back to
the card:

B1 : Dec(RR; kR)
B2 : Dec(RotLeft(Dec(B0; kR), 8) ⊕ B1; kR)

4. Now the card examines if the card reader works with the same key by per-
forming the following computation:

R′

C = RotRight((Enc(B2; kC) ⊕ B1), 8)

If this results in RC , the card has successfully verified the cryptogram. If
R′

C
6= RC then the card sends a failure response to the reader.

5. If the keys on the card and the reader have been chosen different, at this
point the communication terminates.

This authentication procedure is summarized in the following Figure.

card reader DESFire card

−

′REQUEST ′

−−−−−−−−−−−−→
RC = GenRand(64bit)
B0 = Enc(RC ; kC)

←−
B0

−−−−−−−−−−−−
RR = GenRand(64bit)

B1 = Dec(RR; kR)
RC1 = Dec(B0; kR)

RC2 = RotLeft(RC1; 8)
B2 = Dec(RC2 ⊕B1; kR)

−
B1, B2

−−−−−−−−−−−−→
RC4 = Enc(B2; kC)
RC5 = RC4 ⊕B1

R′
C = RotRight(RC5; 8)

←−
’ERROR’

−−−−−−−−−−−− check if R′
C 6= RC?

else
...
...

Fig. 2. Authentication Protocol

Note that the card reader does only perform DES decryption whereas the
card only computes DES encryption.

For a differential side channel analysis either the plaintext or the ciphertext
must be known. We chose a ‘real-life’ scenario with different keys in the RFID
card and reader. For differential analysis we recorded B1 and B2 that are sent



to the card. We treat these data as plaintext data for the Triple-DES encryption
that is performed by the card. This Triple-DES encryption is targeted by DEMA.

4 Experimental Analysis

Our previous experiments in EM analysis showed that for optimal results the
antenna must be placed exactly on top of the chip. As the chip is embedded in
the smart card it is not possible to see where the chip is located. The antenna and
the chip are sealed inside the card material. The card material is not transparent
to strong light neither the chip can be palpated.

4.1 X-Ray Analysis

To analyze the physical arrangement of the DESFire card, we made an X-Ray
photograph of the card.

Fig. 3. X-Ray Photograph of a DESFire card

So we localized the position of the chip and the geometry of the antenna in
the card and it was possible to place the antenna exactly on top of the DESFire
chip, to receive the EM emanation of the DESFire chip.

The first EM experiments showed that the EM field, which is generated
from the reader dominates in the measurements. The comparative small EM
emanation from the DESFire chip is suspended.



4.2 Dissolving the Card and Separating Antenna and Card

To separate the reader’s EM field from the card the DESFire chip must be
isolated from the cards antenna. To access the chip we dissolved the card us-
ing Trichloroethylene C2 H Cl3 at a temperature of 100◦ C. Trichloroethylene
dissolves the outer layers from the card and the chip can be removed without
damage.

Then we built an antenna according to the geometry of the antenna that is
visible on the X-Ray of the DESFire card. Additionally we elongated the cable to
connect the chip by a distance of 30 cm. After soldering the chip to the antenna,
the chip was placed away from the reader’s field, so that the emitted field does
not significantly disturb the measurements anymore.

Figure 4 shows the antenna set-up used for EM analysis.

Fig. 4. Near field probe (cu-plate) on top of the chip during operation.

This results in two benefits: first it is possible to position the antenna more
accurate at the chip, second the measurement antennas can be placed closer to
the chip and so the signal amplitude increases, which results in a better signal-
to-noise ratio (SNR).

4.3 EM Analysis

We recorded up to ten thousand measurements at a sampling rate of 1 GHz
using a digital scope and the RF U-2 near field probe. We observed two distinct
execution times: one is about 390 µs, the other is about 460 µs. The structure
of the EM emanation turned out to be very uniform (see Figure 5).

The correlation method that is described in [2] was used to test for DEMA
leakage. Until now, DEMA was not successful to reveal cryptographic keys.
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Fig. 5. Mean EM emanation focusing at the maximum amplitudes.

5 Further Directions

5.1 Custom RFID-Reader

In the current measurement setup it is very uncomfortable that we have to
examine the reader’s antenna signal at every single measurement to get the
plaintext. Also it is not possible for us to choose the plaintext.

Future work will be to build a custom RFID-Reader, which can be fully
controlled by the measurement equipment, and so, e.g., chosen plaintext attacks
can be performed.

5.2 Analogous Filtering

Using an analogous filter it might be feasible to improve the signal to noise ratio
so that side channel leakage might be detected that is currently suppressed by
the clock signal.

5.3 (Semi) Invasive Analysis

As we accessed the chip in the DESFire card, it would be interesting to perform
EM-measurements more localized, e.g., directly on top of the passivation of the
chip after removing the package.

6 Conclusion

In this work we present first results of EM side channel analysis at a crypto-
graphic contactless smart card. As preparation step for DEMA, the authenti-
cation procedure of the DESFire card was partially revealed. Finally, we give
further directions for future work.
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Abstract

Various public-key cryptosystems require to perform arithmetic operations on very long integers
or on binary polynomials of very high degree. In recent years, a number of so-called unified
multipliers (i.e. multipliers that integrate both types of operands into a single datapath) have
been proposed. This paper presents the design of a radix-2 and a radix-4 version of a unified
(16×16)-bit multiplier with a 40-bit accumulator. The unified multiply/accumulate (MAC) unit
can be used either as arithmetic core of a cryptographic co-processor or as a functional unit
in an application-specific processor. A full-custom layout of both the radix-2 and the radix-4
multiplier was implemented on basis of a conventional array architecture. Simulations of netlists
with extracted parasitics showed a power saving of 22% and an energy-delay advantage of 48% for
the radix-4 multiplier compared to the radix-2 version. The multiplication of binary polynomials
consumes about 39% less power than integer multiplication.

1. Introduction

Public-key cryptography is essential to ensure security and privacy of communication over the
Internet. Virtually all modern security protocols, such as the Secure Socket Layer (SSL) protocol,
rely on the concepts of public-key cryptography as introduced by Diffie and Hellman in 1976
[6]. However, the “traditional” public-key cryptosystems like RSA, DSA, or Diffie-Hellman are
highly computation-intensive applications and thus difficult to implement on constrained devices
like smart cards. In the past, embedded systems with poor processing capabilities used dedicated
hardware (i.e. co-processors) to offload the heavy computational demands of cryptographic algo-
rithms from the host processor. An alternative approach is to customize the processor’s instruction
set and micro-architecture towards the performance-critical operations carried out in cryptography
[13]. Due to the increasing importance of cryptographic workloads, a number of micro-processor
vendors extended their instruction set architectures by special instructions designed for efficient
cryptographic processing; well-known examples are the ARM SecurCore architecture [1] and the
SmartMIPS [23].

∗The research described in this paper was supported by the Austrian Science Fund (FWF) under grant number
P16952-N04 “Instruction Set Extensions for Public-Key Cryptography” and in part by the European Commission through
the IST Programme under contract IST-2002-507932 ECRYPT. The information in this document reflects only the
authors’ views, is provided as is and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.
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In recent years,elliptic curve (EC) cryptosystems became very popular because they allow to
achieve a good balance between security and performance [4]. Compared to their “traditional”
counterparts like RSA, EC systems can use significantly shorter keys in order to guarantee a
certain level of security. A widely accepted rule of thumb states that the security of a prop-
erly constructed 160-bit EC system is comparable to a 1024-bit RSA system. This makes EC
cryptography especially attractive for mobile and wireless devices which are typically limited in
terms of computational resources and/or network connectivity. During the last five years, standards
for EC cryptography have been adopted by a number of standardization bodies around the world,
including the ANSI, NIST, ISO, and IEEE. There is no doubt within the security community that
EC cryptography is well on its way of becoming the de-facto standard for public-key services on
mobile devices [17].

From a mathematical point of view, EC cryptosystems operate in a group of points on an elliptic
curve defined over afinite field[19]. The main operation of EC cryptosystems is a so-called point
multiplication, which is a computation of the formk·P wherek is an integer andP is a point on
the elliptic curve [4]. There exist a number of different algorithms for computingk·P, but in the
end they all require to carry out arithmetic operations (addition, multiplication and inversion) in the
underlying finite field. Efficient implementation of the field arithmetic is therefore the key to high
performance and low power consumption.

Several standards bodies, including the National Institute of Standards and Technology, recom-
mend to use either aprime fieldGF(p) or abinary extension fieldGF(2m) for the implementation
of EC cryptography [25]. The elements of a prime field GF(p) are nothing else than the integers
0,1, . . . , p−1, whereas the elements of a binary extension field GF(2m) are usually represented by
binary polynomialsof degree up tom−1. Both types of operands (integers and binary polynomials)
have in common that a multiplication can be accomplished by generation and addition of partial
products. This has motivated the design ofunified multipliers, i.e. multipliers that use the same
datapath for both integers and binary polynomials [28, 9, 27, 12]. Having a unified multiplier
instead of two separate multipliers can result in significant area savings when an application needs
to deal with both types of operands.

This paper presents an analysis and comparison of two different implementations of a unified
(16×16+40)-bit multiply/accumulate (MAC) unit for integers and binary polynomials. Our first
implementation contains a unified radix-2 multiplier, whereas the second variant is based on a
radix-4 design. The unified MAC units can either be used as arithmetic core of a cryptographic
co-processor [27] or as a functional unit in an application-specific processor [12]. One of the most
important application domains for unified multipliers are cryptographic smart cards—devices where
stringent limitations apply to silicon area as well as power consumption1. Therefore, we realized the
unified multipliers in terms of an array architecture and produced the layout following a full-custom
design methodology. Our simulation results clearly demonstrate that the unified radix-4 multiplier
is superior to the radix-2 variant with respect to silicon area, delay, and power consumption. We also
show that both the radix2 and the radix-4 multiplier consume less power when multiplying binary
polynomials instead of integers.

The remainder of this paper is organized as follows. In the next section we summarize a number
of basic facts about finite fields and review previous work on the design of unified multipliers. The
Sections 3 and 4 describe several implementation details of our unified radix-2 and radix-4 MAC
unit, respectively. Section 5 discusses the design flow and presents simulation results. The paper
finishes with conclusions in Section 6.

1On the other hand, the delay of the multiplier is no major concern since smart cards have a low clock frequency
(typically less than 15 MHz).



2. Background and related work

A finite field (or Galois field) is a finite set of elements on which two operations, generally
called addition and multiplication, are defined such that the field axioms hold [19]. The elements
of a prime field GF(p) are the residue classes modulop (typically represented by the integers
0,1, . . . , p−1) and the field arithmetic is nothing else than the conventional modular arithmetic,
i.e. addition and multiplication modulop. On the other hand, the elements of abinary extension
field GF(2m) can be represented by binary polynomials of degree up tom−1, i.e.

a(t) =
m−1∑
i=0

ai ·t i = am−1 ·tm−1 + · · ·+a1 ·t +a0 (1)

with coefficientsai from the subfield GF(2) = {0,1}. For example, the finite field GF(23) has eight
elements, which are the following binary polynomials.

GF(23) = {0, 1, t, t +1, t2, t2 +1, t2 + t, t2 + t +1} (2)

Any elementa(t) ∈GF(2m) can be written as a bit-string consisting ofm coefficients, i.e.
a(t) = (am−1, . . . ,a1,a0). The addition of field elements is simply a logical XOR operation of
the corresponding coefficients. Multiplication in GF(2m) is performed modulo anirreducible
polynomial p(t) of degreem. This means that a multiplication in GF(2m) requires to multiply
two binary polynomials together (yielding a product-polynomial of degree up to 2m−2), followed
by a reduction of the product-polynomial modulop(t) [14].

There exist some basic similarities between prime fields and binary extension fields. Firstly, the
elements of either type of field can be represented by a bit-string. Secondly, the multiplication in
both GF(p) and GF(2m) implies a modular reduction. Thirdly, the multiplication of both integers
and binary polynomials can be accomplished by generation and addition of partial products. These
similarities facilitate the design of a unified multiplier.

2.1. Design approaches for unified multipliers

The termunification, in general, can be described as the idea of identifying or creating simi-
larities in order to make use of common structures. Prime fields and binary extension fields have
structural similarities which allow to employ the same technique for the multiplication of field
elements. Unification reduces the overall hardware cost when a multiplier for both integers and
binary polynomials is needed. For instance, the area of the unified multiplier reported in [28] is
only marginally larger than the area of a conventional integer multiplier datapath.

When classifying previous work on unified multipliers, three principal design approaches can be
identified. The first approach, originally introduced in [8], uses a specialwiring methodologyin
order to integrate the multiplication of binary polynomials into a tree multiplier. In the most basic
case, a tree multiplier consists of full and half adders and uses a redundant representation (e.g.
carry-save form) for the summation of partial products. The sum output of a full adder provides
the logical XOR of its inputs, which is exactly the functionality needed for the addition of binary
polynomials. This allows to design a unified multiplier by modifying the wiring of the partial
product summation tree so that no carry bits are added with partial products before the final adder.
In other words, the architecture presented in [8] implements two separate sub-trees for the addition
of sum and carry vectors; one sub-tree consists of the adders’ XOR logic, whilst the second sub-tree



comprises the other gates of the adder cells. The sum input to the final adder represents the XOR
of all partial products, which is the result of the polynomial multiplication. A unified multiplier
designed along these lines has the same delay as the original tree multiplier and does not increase
the hardware cost (except of a few multiplexers). The authors of reference [27] employed similar
ideas to design a unified multiplier for EC cryptography.

A completely different approach for combining the multiplication of integers and binary poly-
nomials into a single datapath was proposed by Drescheret al [7]. They investigated the imple-
mentation of arithmetic in GF(2m), m≤ 8, on a DSP datapath for signal coding, in particular BCH
codes. However, unlike the approach taken in [8], Drescheret al did not modify the wiring within
the partial product summation tree, but modified the half and full adder cells by adding some extra
logic that allows to set the carry output to zero. The sum output of a full adder represents the
modulo-2 sum (i.e. XOR) of the corresponding input values. Thus, suppressing all carries of the
half and full adder cells enables a radix-2 integer multiplier to perform a multiplication of binary
polynomials. Savaşet al used this concept to implement a unified multiplier for EC cryptography
[28]. They presented the design of a so-calleddual-field adder(DFA), which is nothing else than
a conventional full adder with the capability to set the carry output to zero. A properly designed
DFA has no higher delay than a conventional full adder and consumes significantly less power in
polynomial mode than in integer mode [11]. This approach for unification is very attractive for
array multipliers because it preserves the regularity of the architecture. On the other hand, DFAs
increase the area compared to a standard multiplier and require to broadcast an additional control
signal.

A third approach for combining integer and polynomial addition was proposed by Au and
Burgess [2]. They implemented the addition of integers by using aredundant binary represen-
tation based on the digit set{0,1,2}, whereby the digits have the following encoding: 0∼ (0,0),
1∼ (0,1), and 2∼ (1,0). A fourth digit, denoted 1* and encoded as (1,1), represents the 1 in GF(2),
which means that the addition of binary polynomials is performed with the digit set{0,1*}. Taking
advantage of this special encoding, Au and Burgess proposed a unified (4:2) adder for integers and
binary polynomials. The (4:2) adder has a critical path of only three XOR gates and does not need
extra control logic to suppress the carries for polynomial addition. However, a drawback of Au and
Burgess’ approach is the relatively high power consumption in polynomial mode, which is due to
the use of the redundant binary representation [12].

2.2. Multiplication in finite fields of high order

The finite fields used in EC cryptography have a typical order of between 2160 and 2200, which
means that the bit-length of a field element exceeds the 16-bit word-size of our unified multiplier
by an order of magnitude. Obviously, this raises the question of how a(16×16)-bit multiplier can
be utilized to perform a multiplication of two 160-bit integers (or binary polynomials of such size).
The mismatch between the operand length and the processor’s word-size is generally resolved by
representing the long integers as arrays of single-precision (e.g. 16-bit) words and using special al-
gorithms for performing arithmetic operations on these arrays with help of the instructions provided
by the processor.

Algorithm 1 illustrates the so-called product-scanning technique formultiple-precision mul-
tiplication of integers [14]. The operation carried out in the inner loops (line 4 and 11) is a
multiply/accumulate (MAC) operation—two single-precision (w-bit) words are multiplied and the
2w-bit product is added to a running sum. This algorithm requires a MAC unit with a “wide”
accumulator (e.g. 8 guard bits) in order to prevent overflows and loss of precision. In general,



Algorithm 1 Multiple-precision multiplication
Input: Two integersA = (Ad−1, . . . ,A0) and B = (Bd−1, . . . ,B0), represented by arrays ofd words, each

consisting ofw bits.
Output: ProductZ = A·B = (Z2d−1, . . . ,Z0).

1: S← 0
2: for i from 0 by 1 tod−1 do
3: for j from 0 by 1 toi do
4: S← S+ A j ×Bi− j

5: end for
6: Zi ← Smod 2w {Zi is assigned thew LSB of S}
7: S← bS/2wc {S is shiftedw bits to the right}
8: end for
9: for i from d by 1 to 2d−2 do

10: for j from i−d+1 by 1 tod−1 do
11: S← S+ A j ×Bi− j

12: end for
13: Zi ← Smod 2w {Zi is assigned thew LSB of S}
14: S← bS/2wc {S is shiftedw bits to the right}
15: end for
16: Z2d−1← Smod 2w

17: return Z = (Z2d−1, . . . ,Z0)

Algorithm 1 performsd2 MAC operations for the multiplication of twod-word integers. We point
out that the algorithm also works for binary polynomials, provided that we replace the integer MAC
operation by a MAC operation on binary polynomials (see [11] for further details). This proves
that the concept of unification is not only applicable to multiplier datapaths but also to arithmetic
algorithms (algorithmic unification).

The availability of a unified MAC unit allows very fast software implementation of multiple-
precision multiplication (for both integers and binary polynomials). Furthermore, the same concept
can also be applied to the design of a cryptographic co-processor where a unified MAC unit operates
as arithmetic core, such as proposed in [27].

Modular reduction: A multiplication in GF(p) or GF(2m) is generally realized in two steps:
multiplication of long integers (or binary polynomials of high degree) and reduction of the product
modulo the primep (or the irreducible polynomialp(t)) to obtain the final result. The most widely
used generic algorithm for performing a reduction modulo a primep is due to Montgomery [24].
Reference [15] describes a number of methods which combine multiplication and Montgomery
reduction into a single operation. One of these methods, the so-called Finely Integrated Operand
Scanning (FIPS) method, performs MAC operations in its inner loop, similar to Algorithm 1. It
was shown in [16] that Montgomery’s algorithm can also be applied to the reduction of a binary
polynomial modulo an irreducible polynomialp(t). As mentioned before, Montgomery’s algorithm
is a generic algorithm that works for any prime or any irreducible polynomial.

However, it is common practice in EC cryptography to use special primes or special irreducible
polynomials for which much faster reduction techniques exist. For instance, the NIST specified
a set of five prime fields defined by so-called generalized Mersenne (GM) primes and a set of
five binary extension fields defined by irreducible polynomials with few non-zero coefficients, e.g.
trinomials or pentanomials [25]. A typical example for a GM prime isp = 2192−264−1, and a
reduction modulo this prime can be accomplished with a few multiple-precision additions, which
is a linear-time operation and thus much faster than Montgomery’s algorithm. The reduction of a



binary polynomial modulo an irreducible trinomial such asp(t) = t233+ t74+1 requires only a few
shift and XOR operations. These special reduction techniques are well documented in a number of
papers and textbooks about EC cryptography, e.g. in [14].

3. Unified radix-2 multiplier

There exist a variety of implementation options for multipliers, which are typically determined
by the requirements (e.g. delay, power consumption, silicon area) and/or the design methodology
(e.g. standard cells versus full-custom design). Embedded systems like smart cards impose some
stringent restrictions on power consumption and silicon area. In this context, the decision between
an array-like and a tree-like architecture is a major concern.

Array versus tree: Array multipliers are known to provide high regularity and locality at the
silicon level for the expense of a critical path delay that scales linearly with the word-size. On the
other hand, tree multipliers have an irregular structure but can work at much higher frequencies due
to a significantly shorter (i.e. logarithmic-length) critical path. Although the speed characteristics
of array and tree multipliers are obvious and well understood, the situation is not so clear regarding
power consumption.

At a first glance, one is tempted to attribute array multipliers a rather high power consumption be-
cause of the long signal paths which may cause lots of gate-output transitions to propagate through
the array. It was shown in [5] and [3] that array multipliers consume significantly more power
than tree multipliers when the impact of wiring is completely ignored. However, since CMOS
process technology improves and transistor geometries become smaller and smaller, the parasitic
capacitances of interconnect wires dominate over the transistor capacitances. Tree multipliers suffer
from long interconnect wires with high capacitive load, which is due to their irregular structure.
Moreover, signal paths of varying lengths lead to signal skew and an increased number of glitches
or spurious transitions. Meieret al [21] have demonstrated that wiring has a major impact on the
power consumption of tree multipliers, and that the difference between array and tree multipliers is
very small when wiring effects are considered.

An array-like architecture is definitely to prefer over a tree-like architecture when one employs
a full-custom design methodology instead of logic synthesis with automatic place and route. It is,
of course, also possible to produce a full-custom layout of a tree multiplier, but this is a tedious
task because of the irregular structure. Array architectures feature a high degree of regularity and
mainly local interconnect, which makes them easy to design and lay out. Taking these aspects into
account, we opted for the array architecture in combination with a full-custom design methodology.

Full-custom cell library: Bisdouniset al [3] compared eight circuit techniques to determine their
suitability for the design of low-power adders and multipliers. Complementary static CMOS logic
showed good results in this comparison and belonged to the “Top 3” logic styles with respect to
power consumption. Furthermore, static CMOS logic is fast, easy to design, immune to noise,
and robust against voltage scaling and transistor downsizing. All these excellent properties make
complementary static CMOS the circuit technique of choice for the implementation of a low-
power/small-area multiplier [31].

We developed a full-custom cell library containing all standard logic gates with two and three
inputs. In addition, our cell library also includes a two-input XOR and XNOR implemented on
basis of the “classical” transmission-gate XOR/XNOR circuit with a tailing inverter to increase the
drive strength (see Figure 4 in [18]). Transmission gates were also used for the implementation of



an inverting 2:1 multiplexer. The XOR and XNOR gate comprise of eight transistors each, whereas
the multiplexer has a transistor count of six.

3.1. Generation of partial products

A multiplication of unsigned 16-bit integersA, B can be carried out by generation and addition
of partial products:

Z = A·B = A·
15∑
i=0

bi ·2i =
15∑
i=0

A·bi ·2i (3)

In the binary case (i.e. radix-2 representation), the generation of a partial productA·bi is a simple
logical AND operation between the multiplier bitbi and the 16 bits of the multiplicandA. These
partial products have to be summed up according to their weight 2i (i.e. in the appropriate relative
position) to get the correct resultZ = A·B.

The multiplication of binary polynomials can employ the same technique of generation and
addition of partial products. For example, a multiplication of two binary polynomialsA(t),B(t)
of degree 15 is performed as follows.

Z(t) = A(t) ·B(t) = A(t) ·
15∑
i=0

bi ·t i =
15∑
i=0

A(t) ·bi ·t i (4)

All coefficientsbi of B(t) are from GF(2)= {0,1} when using a conventional (i.e. radix-t) repre-
sentation, which means that the generation of a partial productA(t) ·bi is a logical AND operation
betweenbi and the coefficients ofA(t) [29]. The multiplication of a partial productA(t) ·bi by a
power of the formt i is nothing else than a left-shift byi bit positions (“Shift-and-XOR” method).
A partial product generator (PPG) for a unified radix-2/radix-t multiplier consists of a row of AND
gates. In other words, we can use exactly the same hardware (namely AND gates) to generate
partial products for both integer and polynomial multiplication.

3.2. Addition of partial products

A conventional implementation of an array multiplier is built of rows of (3,2) counters (full
adders) and (2,2) counters (half adders) to reduce the partial products to a sum and carry vector.
The addition of this sum and carry vector is the final step for completing a multiplication and calls
for a fast carry-propagation adder (often referred to as “final adder”). In the radix-2 case, a typical
(w×w)-bit array multiplier consists ofw2 AND gates,w−1 half adder cells,(w−1) ·(w−2) full
adder cells, and aw-bit carry-propagation adder for the redundant-to-binary conversion of the upper
part of the result (see [30] for details).

As mentioned in Section 2.1, there are three basic approaches for combining integer and poly-
nomial multiplication into a single datapath. The first approach (i.e. the special wiring technique
described in [8]) is applicable to tree multipliers, but would completely destroy the regularity of an
array multiplier. On the other hand, the use of a redundant binary representation, as proposed in [2],
has advantages for high-speed designs, but imposes significant power consumption in polynomial
mode [12]. Therefore, we opted to implement the multiplier datapath with dual field adders as this
approach complies best with our requirements for regular layout and low power consumption.

Figure 1 shows the dual-field adder (DFA) design from our previous work [11]. This design
implements basically a standard full adder with some extra logic to set the carry output to 0. The



cin

sin

pin

sout

cout

fsel

Figure 1. Dual-field adder (DFA) Figure 2. DFA full-custom layout

control signalfselallows to switch between integer mode and polynomial mode. In integer mode
(fsel= 1), the DFA works like a conventional full adder, i.e. both the sum and the carry output
are active. On the other hand, when the DFA is operated in polynomial mode (fsel= 0), both
NAND gates are 1, which forces the ORNAND gate (and consequentlycout) to 0. The advantage
of this design is that only the two XOR gates are active in polynomial mode; all other gates do not
transition and hence they also do not consume power. Therefore, the DFA depicted in Figure 1 has
a substantially lower power dissipation in polynomial mode than in integer mode. This is a major
advantage over the DFA design presented in [28], which does not suppress unnecessary switchings
in polynomial mode.

We implemented the DFA using the cells of our full-custom cell library, whereby the transistors
of all gates have minimum size. The only exception are the PMOS transistors of the ORNAND
gate, which were enlarged to ensure that the sum and carry output have similar drive strength and
similar rise/fall times. Simulations of the DFA layout with extracted parasitics showed that the
delay from the inputssin, cin to the two outputssoutandcout is also almost identical. The use
of minimum-size transistors in combination with delay balancing helps to reduce the impact of
spurious transitions (glitches) on the total power consumption. Other advantages of the DFA are
its relatively small area and a short critical path. The five gates shown in Figure 1 amount to 32
transistors altogether (on basis of our full-custom cell library), which is only four transistors more
than the classical 28-transistor full adder design given in [30, p. 517]. The delay of a full adder
is generally determined by the delay of the XOR gates, which means that our DFA has the same
critical path delay as a conventional full adder. In summary, the DFA shown in Figure 1 is only
marginally larger than a full adder and has the same propagation delay. The complete adder array
of a unified (16×16)-bit multiplier has, in the radix-2 case, a critical path of 14 DFA cells and one
dual-field half adder cell.

3.3. Accumulator and final adder

The adder-array reduces the partial products to a single sum and carry vector. An accumulator
allows to add the result of the multiplication to a running sum. The accumulator of our unified
multiplier is composed of DFAs and has a length of 40 bits (i.e. eight guard bits to prevent over-
flow). The outputs of the accumulator represent the result of the multiply/accumulate operation in
redundant representation (carry-save form). Consequently, we have to convert the sum and carry
vectors into a standard binary number to obtain the final result.

The redundant-to-binary conversion (“final addition”) calls for a fast carry-propagation adder.
An important aspect when designing a final adder is to consider the non-uniform signal arrival



profile of the sum and carry vector [26]. Array multipliers typically have a “staircase-like” signal
arrival profile, which means that the lower half of the result arrives sequentially (bit by bit), whereas
the upper part arrives simultaneously after passing through the full adder array. In order to reduce
the overall delay of the MAC unit, we designed the final adder to match this special signal arrival
profile. The final adder consists of a ripple-carry adder for the redundant-to-binary conversion of
the sequentially-arriving bits, and a fast carry-select adder (CSA) for the upper bits of the result.
We used ripple-carry adders of varying length for the sub-stages of the CSA in order to reduce the
overall delay. A CSA composed of “small” ripple-carry adders features a high degree of regularity,
which is clearly an advantage for full-custom design.

The multiplication of binary polynomials does not need a final adder, simply because all carry
vectors are 0 in polynomial mode. Therefore, we forward the accumulator’s sum output directly to
the output of the multiplier when a polynomial multiplication is performed. The sum input to the
final adder is set to 0 in polynomial mode to ensure that the final adder is completely inactive and
does not dissipate power.

4. Unified radix-4 multiplier

High-radix multiplication schemes reduce the number of partial products compared to the con-
ventional (i.e. radix-2 or binary) multiplication scheme, which shortens the critical path of an array
multiplier since fewer partial products have to be summed up. A radix-4 multiplication of two
unsigned 16-bit numbers can be performed according to the following equation.

Z = A·B = A·
7∑

k=0

bk ·4k =
7∑

k=0

A·bk ·4k with bk ∈ {0,1,2,3} (5)

The conventional radix-4 representation of integers is based on the digit-set{0,1,2,3}. Conse-
quently, any partial productPk = A·bk is either 0,A, 2A, or 3A, whereby the latter one is difficult
to compile since summing 2A with A can generate a carry propagation. Therefore, most radix-4
multiplication schemes employ other digit sets, such as{−2,−1,0,1,2} used in modified Booth
recoding [20].

High-radix multiplication is also possible for binary polynomials and has been first described in
[29, 22]. Similar to integers, the use of a high-radix representation reduces the number of partial
products. The radix-t representation of binary polynomials is based on the coefficient set{0,1},
and hence it corresponds to the standard radix-2 representation of integers. On the other hand, the
analogue of radix-4 integer representation is the radix-t2 representation of binary polynomials. This
representation uses the coefficient set{0, 1, t, t +1} and allows to perform a multiplication of two
binary polynomialsA(t), B(t) of degree 15 as follows.

Z(t) = A(t) ·B(t) = A(t) ·
7∑

k=0

bk(t) ·t2k =
7∑

k=0

A(t) ·bk(t) ·t2k with bk(t) ∈ {0, 1, t, t +1} (6)

All coefficientsbk(t) of a binary polynomialB(t) in radix-t2 representation are themselves binary
polynomials, namely binary polynomials of degree at most one (i.e. 0, 1,t, or t +1). The corre-
sponding partial productPk(t) = A(t) ·bk(t) is either 0,A(t), t ·A(t), or A(t)⊕ t ·A(t), all of which
can be easily generated by 1-bit left-shifts and XOR operations. Therefore, a radix-t2 multiplication
can be efficiently performed with the standard coefficient set{0, 1, t, t +1}.
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Figure 3. Unified radix-4 PPG for integers and radix- t2 PPG for binary polynomials

4.1. Generation of partial products

Modified Booth recoding (also called Booth-MacSorley recoding [20]) is frequently used in array
multipliers as it reduces the number partial products by a factor of two. Unfortunately, modified
Booth recoding is not directly applicable to binary polynomials since it relies on a signed-digit
representation with the digit set{−2,−1,0,1,2}. It is nonetheless possible to “unify” the high-radix
multiplication of integers and binary polynomials, as we demonstrated in our previous work [10].
In the following, we summarize how a unified radix-4/radix-t2 multiplier generates partial products
in integer mode and polynomial mode.

Integer mode: Modified Booth recoding is generally performed within two steps:Encodingof the
multiplier B andSelection(i.e. generation) of the partial products. The encoding step can be seen
as a conversion where a radix-2 numberB with digits bi in {0,1} is transformed into an equivalent
radix-4 number̃B represented by digits̃bk from the set{−2,−1,0,1,2}. When assuming thatB is
an unsigned 16-bit integer, the conversion can be carried out as follows.

B̃ =
8∑

k=0

b̃k ·4k with b̃k =−2·b2k+1 +b2k +b2k−1 and b17 = b16 = b−1 = 0 (7)

The radix-4 digits̃bk are obtained by partitioning the multiplierB into overlapping groups of three
adjacent bitsb2k+1, b2k, b2k−1 (for k = 0,1,2, . . . ,8) and calculating−2·b2k+1 +b2k +b2k−1 as
shown in Equation (7). All digits̃bk are available simultaneously since they can be calculated
independently from each other and in parallel. A multiplication with the radix-4 numberB̃ instead
of B reduces the number of partial products from 16 to 9 (or 8 when multiplying signed integers).
The primary advantage of using the digit set{−2,−1,0,1,2} is that the corresponding partial prod-
uctsPk ∈ {−2A,−A,0,A,2A} can be easily generated with shifts and bit-wise inversions. Booth
multipliers generally use two’s complement (TC) representation for negative numbers. Negative
partial products, in TC form, are obtained by inverting the corresponding positive partial product
(i.e. producing the one’s complement) and adding a “1” at the least significant bit position. This
“correction” is performed together with the addition of partial products in the adder array.

Figure 3 shows of a unified radix-4/radix-t2 partial product generator (PPG) for integers and
binary polynomials. This design is adapted from [10] and optimized for implementation with our
full-custom cell library. The PPG is controlled by the three signalsinv (invert), trp (transport), and



Multiplier bits Integer mode (fsel= 1) Polynomial mode (fsel= 0)
b2k+1 b2k b2k−1 Pk inv trp shl “+1” Pk(t) inv trp shl “+1”

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 +A 0 1 0 0 0 0 0 0 0
0 1 0 +A 0 1 0 0 A(t) 0 1 0 0
0 1 1 +2A 0 0 1 0 A(t) 0 1 0 0
1 0 0 −2A 1 0 1 1 t ·A(t) 0 0 1 0
1 0 1 −A 1 1 0 1 t ·A(t) 0 0 1 0
1 1 0 −A 1 1 0 1 t ·A(t)⊕A(t) 0 1 1 0
1 1 1 0 1 0 0 0 t ·A(t)⊕A(t) 0 1 1 0

Table 1. Radix-4 encoding of integers and radix- t2 encoding of binary polynomials

shl (shift left). These signals depend on the multiplier bitsb2k+1, b2k, andb2k−1 according to Equa-
tions (8)-(10), which can be easily derived from Table 1. In integer mode (fsel= 1), the generation
of partial products is performed similar to the classical encoding scheme usingN / X1 / X2signals
as specified in [30, p. 551]. Therefore, the unified PPG acts like a conventional radix-4 Booth-PPG
when operated in integer mode. The logical equation for the “+1” needed in case of a negative
partial product is also easily derived from Table 1.

inv = fsel·b2k+1 (8)

trp = fsel·
(
b2k·b2k−1 + b2k·b2k−1

)
+ fsel·b2k (9)

shl = fsel·
(
b2k+1·b2k·b2k−1 +b2k+1·b2k·b2k−1

)
+ fsel·b2k+1 (10)

The PPG shown in Figure 3 needsA (the multiplicand) and its inverseA as input, and the multi-
plexors select betweenA andA, depending on the control signalinv. The AND/XOR combination
performs a 1-bit left-shift operation whenshl= 1, which is necessary for the generation of the
partial products 2A and−2A. On the other hand,trp = 1 means that no left shift is performed and
hence the resulting partial product is eitherA or−A.

Polynomial mode: Radix-t2 multiplication of binary polynomials corresponds to radix-4 multipli-
cation of integers. Given two binary polynomialsA(t), B(t) in conventional (i.e. radix-t) repre-
sentation, the radix-t2 multiplication requires to scan two adjacent bits ofB(t) at a time in order
to produce the corresponding partial productPk(t) as specified by Equation (6). Two adjacent bits
of B(t) can be interpreted as a binary polynomial of degree one, and depending on whether this
polynomial is 0, 1,t, or t +1, the corresponding partial productPk(t) is either 0,A(t), t ·A(t), or
t ·A(t)⊕A(t). The multiplication ofA(t) by t is nothing else than a 1-bit left shift of the coefficients
of A(t), which means that the partial-product generation for radix-t2 multiplication is simply a
matter of shift and XOR operations.

An important property of theinv / trp / shl scheme is that, in integer mode (fsel= 1), the two
control signalstrp and shl are never 1 at the same time (see Table 1), which allows us to use
XOR gates to select between±A and±2A. Thanks to this property, the PPG shown in Figure 3
provides the necessary functionality to generate partial products for radix-t2 multiplication. In
polynomial mode (fsel= 0), the control signalinv is always 0 and the PPG is directly controlled by
the coefficients ofB(t), i.e. trp = b2k andshl= b2k+1. Therefore, the PPG depicted in Figure 3 is a
unified radix-4 PPG for integers and binary polynomials2.

2We denote the combined radix-4/radix-t2 PPG as“unified radix-4 PPG for integers and binary polynomials”since
the radix-t2 multiplication of binary polynomials corresponds to the radix-4 multiplication of integers.



4.2. Addition of partial products

Employing radix-4 Booth recoding in a (16×16)-bit multiplier reduces the number of partial
products from 16 to 9 (in the case of unsigned integers). On the other hand, radix-t2 polynomial
multiplication halves the number of partial products compared to the radix-t scheme (i.e. 8 partial
products instead of 16). The adder array of a unified radix-4 multiplier for 16-bit operands is, in
general, dimensioned to sum up 9 partial products. This means that the radix-4/radix-t2 scheme
reduces the overall number of DFAs by almost 50% in relation to the radix-2/radix-t scheme. How-
ever, the adder array of a unified radix-4 multiplier differs in the following aspects from the radix-2
version.

• The length of the partial products is 18 bits instead of 16 bits since they can be twice the
multiplicandA and can have a negative value. The MSB of the partial product is its sign bit.

• The rules of two’s complement arithmetic demand a sign extension, which increases both area
and power consumption. Therefore, it is important to minimize the effects of sign extension.

• The PPG shown in Figure 3 performs merely an inversion when the generation of a negative
partial product is required. Therefore, the adder array has to add a “1” at the least significant
position of the partial product in order to get the correct two’s complement representation.

• The partial products have to be summed up according to their “weight” (i.e. in the appropriate
relative position) to obtain the correct result. For instance, the partial productPk has four times
the weight ofPk−1, which means that the offset betweenPk andPk−1is two bit positions.

Further details about the implementation of an adder array for radix-4/radix-t2multiplication can be
found in our previous paper [12]. Although originally developed for standard-cell implementation,
the architecture in [12] is also well suited for full-custom design since it features a high degree
of regularity and mainly local interconnect. The adder array of a unified (16×16)-bit multiplier
implemented according to [12] consists of 7 adder stages to sum up the 9 partial products. Each
adder stage is composed of 18 DFAs, which amounts to 126 DFAs altogether. The first three partial
products,P0, P1, andP2, can be summed up by one adder stage. All remaining partial products
require an additional adder stage, which results in the 7 adder stages mentioned before. The critical
path of the radix-4 adder array (i.e. 7 DFA cells) is only one half of the radix-2 array.

4.3. Accumulator and final adder

The 40-bit accumulator of the unified radix-4 multiplier is identical to the one of the radix-2
version. On the other hand, the signal arrival profiles, and hence the final adders, differ slightly.
The radix-4 multiplier also has a “staircase-like” profile, but the low-order bits (i.e. the 16 LSB)
of the sum and carry vector arrive sequentially in two-bit blocks, instead of one bit at a time as in the
radix-2 multiplier. Therefore, the final adder uses concatenated 2-bit ripple-carry adders (RCAs)
for the redundant-to-binary conversion of these bits. The high-order bits of the sum and carry vector
arrive simultaneously, as in the radix-2 version, and are summed up by a fast carry-select adder.

5. Results and discussion

We created a full-custom layout of both the unified radix-2 and radix-4 MAC unit using a stan-
dard 0.6 µm CMOS technology with two metal layers and one polysilicon layer. The transistor
width of gates with ordinary (1x) drive strength is generally 1.5 µm; gates with 2x drive strength



Parameter Radix-2 version Radix-4 version

Transistor count 12,384 11,744
Delay (INT mode) 82.4 nsec 54.3 nsec

Avg. current (INT mode) 7.37 mA 5.75 mA
PDP (INT mode) 2.43 nJ 1.90 nJ
EDP (INT mode) 200.2·10−18 Js 103.0·10−18 Js

Delay (POLY mode) 66.8 nsec 38.0 nsec
Avg. current (POLY mode) 3.66 mA 3.49 mA

PDP (POLY mode) 1.21 nJ 1.15 nJ
EDP (POLY mode) 80.7·10−18 Js 43.8·10−18 Js

Table 2. Simulation results (f = 10 MHz, Vdd = 3.3 V)

are realized with PMOS transistors of width 3.0 µm and NMOS transistors of 1.5 µm, respectively.
Both the radix-2 and the radix-4 multiplier have a regular structure with mainly local interconnect
(i.e. short wires), which enables the use of minimum-size transistors in gates and drivers. However,
some gates demand an increased drive strength in order to achieve equal output signal strength or
to balance the delay and rise/fall times of signal slopes. Delay balancing guarantees synchronously
arriving signals at the input of logic gates, thereby eliminating, or substantially reducing, the power
dissipation caused by spurious transitions (glitches).

Design flow: We developed the layout of the multiply/accumulate unit following a hierarchical
bottom-up approach. First, afull-custom cell libraryconsisting of basic CMOS gates was imple-
mented. Then, theleaf cells(DFA cells, PPG cells) were composed of these gates. We carefully
optimized the layout of the leaf cells in order to reduce the intra-cell routing and to keep the overall
silicon area as small as possible. The multiplier datapath is made up of an ensemble of (almost)
identicalbit-slices, which allows to exploit the regularity of the array architecture. This bit-slice
organization has the advantage that the place-and-route problem needs to be solved only once since
all slices have an (almost) uniform layout. Furthermore, the floorplanning and place-and-route
of the multiplier datapath becomes very simple, especially when the bit-slices are designed to
connect “by abutment”. In this case, the generation of the multiplier datapath is simply a matter
of replicating instances of bit-slices, whereby these instances are automatically connected. Not
only the intra-slice but also the inter-slice wires are very short due to the regularity of the array
structure (i.e. mainly nearest-neighbor connections). The correctness of the multiplier was verified
by simulations with test vectors obtained from a functional model.

Simulation results: Table 2 summarizes the simulation results and main characteristics of the two
unified (16×16+40)-bit MAC units. Both the radix-2 and the radix-4 version consist of roughly
12,000 transistors, whereby the silicon area of the the radix-2 MAC is slightly larger. The radix-4
variant has a worst-case delay of 54.3 nsec (integer mode, 3.3 V supply voltage), which corresponds
to a maximum clock frequency of 18.4 MHz. As expected, the radix-2 MAC is significantly slower,
mainly due to the longer critical path in the adder array. Both versions are not very fast since
we used a 0.6 µm CMOS process and because most devices are of minimum size. However, the
performance is appropriate for typical smart card applications. Each of the two MAC units executes
a polynomial multiplication much faster than an integer multiplication since a redundant-to-binary
conversion of the result is not necessary in polynomial mode (i.e. the final adder is bypassed).

The average current dissipation of both the radix-2 and radix-4 implementation is also specified
in Table 2. These results were obtained through simulation of netlists with extracted parasitics. In



general, the current drawn during a multiplication depends heavily on the input values. There-
fore, we simulated 1,000 multiply/accumulate operations with independent, pseudo-random input
patterns and measured the current consumption. The simulations were performed at a frequency
of 10 MHz (i.e. new inputs were presented with a period of 100 nsec), which is a typical clock
frequency for smart cards. Our results show that the radix-4 version dissipates, on average, 22%
less power than the radix-2 version. This power saving is mainly due to the shorter adder array in
the radix-4 multiplier, which reduces the number of glitches compared to the radix-2 version. In
both cases, the multiplication of binary polynomials consumes significantly less power than integer
multiplication (e.g. 39% in the radix-4 version). Polynomial multiplication needs no redundant
representation and therefore causes less switching activities in the adder array (only the XOR gates
of the DFAs are active) and no switchings at all in the final adder since it is bypassed (i.e. its inputs
do not toggle).

Besides silicon area, delay, and power dissipation, also thepower-delay product(PDP) and the
energy-delay product(EDP) are generally accepted as comparison metrics for MAC units. When
the leakage current is ignored, the PDP of a static CMOS multiplier can be interpreted as the
average amount ofenergy consumed per multiplication. Therefore, the PDP is an important metric
for battery-operated devices as it determines the battery-lifetime. Our simulations showed that the
average amount of energy required to perform an integer multiplication is 2.43 nJ for the radix-2
multiplier, but only 1.90 nJ for the radix-4 variant, which represents a saving of 22%. The EDP
differs by more than 48% in integer mode. Both the radix-2 and radix-4 version have much better
energy characteristics in polynomial mode than in integer mode. This confirms that polynomial
multiplication is more energy-efficient than integer multiplication.

6. Concluding remarks

In this paper, we analyzed and compared two implementations of a unified (16×16+40)-bit
MAC unit for integers and binary polynomials. The first implementation is based on a unified
radix-2/radix-t multiplication scheme, while the second employs modified radix-4 Booth recoding
for integers and radix-t2 multiplication for binary polynomials. Both the radix-2 and radix-4 variant
are based on a conventional array architecture and perform multiplications and multiply/accumulate
operations in one clock cycle. The MAC unit can be integrated into a cryptographic co-processor
or an application-specific processor to accelerate EC cryptography over GF(p) and GF(2m).

Our simulation results show that the unified radix-4 MAC unit is superior to its radix-2 counter-
part in terms of silicon area, delay, and power consumption. While the difference in silicon area
is only marginal, the radix-4 version achieves a 34% improvement in delay and a power advantage
of 22% compared to the radix-2 version. Moreover, the radix-4 MAC exhibits a significantly better
EDP. Taking the tight energy budget of mobile devices like smart cards into account, the unified
radix-4 multiplier represents a major improvement over the radix-2 designs proposed in [28, 9, 27].
We have also demonstrated that the multiplication of binary polynomials is more energy-efficient
than integer multiplication since the latter generally uses a redundant representation which causes
more signal transitions. This is an important result since typical EC cryptosystems require to carry
out hundred-thousands, or even millions, of (16×16)-bit multiplications and MAC operations.
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[13] J. Großscḧadl and E. Savaş. Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(2m). In
Cryptographic Hardware and Embedded Systems — CHES 2004, vol. 3156 ofLecture Notes in Computer Science,
pp. 133–147. Springer Verlag, 2004.

[14] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone.Guide to Elliptic Curve Cryptography. Springer Verlag, 2004.
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Abstract. In the recent past, hyperelliptic curve cryptosystems received
a lot of attention especially for restricted environments. In this article
we investigate the arithmetic of some hyperelliptic curves of genus 2 de-
fined over a binary field F2d . At SAC 2004, Lange and Stevens provided
doubling formulae in affine coordinates which are very fast – only 1 in-
version, 6 squarings and 5 multiplication are needed some special choices
– but still these formulae require 1 inversion per group operation which
is prohibitive for small devices like smart cards and FPGAs.

Our goal is to present inversion-free formulae for the special type of
curves with h of degree 1 identified in that paper. Our formulae are
much faster than the general methods presented in the literature so far.

As a second topic we consider compression techniques. Especially for
small devices and low communication bandwidth it might be worth some
effort to save half of the size. Our proposal has the advantage over pre-
vious methods that all operations are performed in the ground field.

Keywords. Hyperelliptic curves, fast arithmetic, explicit group opera-
tions, binary fields, compression.

1 Introduction

Curve based cryptography offers the advantage that so far no subexponential
algorithm for solving the discrete logarithm problem is known for small genus1.
This means that for equal security the group size can be chosen much smaller
than for discrete logarithm systems based on the multiplicative group of a fi-
nite field or RSA. Therefore, curve based systems raised quite some interest for
embedded systems. Elliptic curves were studied for applications during almost
two decades now. For a long time, hyperelliptic curves were not considered to be
competitive, until recently the group arithmetic was improved by several authors
[Har00,Lan01,MDM+,Tak02,Lan05,SMCT02,KGM+02,Pel02,Wol04,GMA+05].

Avanzi [Ava04] gives a comparison via implementation for fields of odd char-
acteristic showing genus two curves to lead to systems almost as fast as those
from elliptic curves. For characteristic two fields the group law depends a lot on
1 Here, small really means genus g ≤ 3 by [Gau00,Thé03,GT04,Nag04], and even for
g = 3 some care has to be taken.
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the equation of the curve. In [CY02,BD04] and [ACD+05, Ch. 14] four different
types of curves are classified out of which three are nonsupersingular, hence, use-
ful for applications based on the DLP. Pelzl, Wollinger, and Paar [PWP04] give
doubling formulae for a very special case which is faster than the most efficient
case in [BD04]. In [LS05] all three nonsupersingular cases are considered and
the to-date most efficient doubling formulae are given. Implementations show
that for the case of deg(h) = 1 scalar multiplications are faster than on elliptic
curves.

In this paper we concentrate on this most efficient case from [LS05] and in-
vestigate different inversion-free systems. The result is a detailed classification
of how many field operations are needed to perform doublings and additions in
the respective systems such that the implementor can choose the most appropri-
ate system depending on the number of precomputations he can store, i. e. how
much more frequent doublings appear compared to additions.

As a second topic we propose a new compression algorithm which has the
advantage over previous proposals [HSS01] that all computations are performed
in the same field over which the divisor class is defined and that they do not
require working in extension fields. The approach is similar to Stahlke’s [Sta04]
but he considers only odd characteristic and in fact his approach fails for even
characteristic in general and in the considered special case a lot of changes are
necessary.

The remainder of the paper is structured as follows: first we briefly review
background on hyperelliptic curves and provide doubling formulae in projective
coordinates. The new coordinates from [Lan05] are easily adapted to the new
doubling formulae but are not particularly efficient. Therefore, we present a new
system of weighted coordinates for which we provide both addition and doubling
formulae. For applications the following comparison is important as a summary
of the previous sections and because also mixed systems are discussed. Before
concluding we state the compression and decompression algorithms.

2 Basic Notations and Preliminaries

We refer the interested reader to [ACD+05,FL03,Lor96,MWZ98,Sti93] for math-
ematical background.

Let Fq, q = 2d, be a finite field of characteristic 2 and let C be a hyperelliptic
curve defined over Fq. In cryptography one usually deals with curves C given by

C : Y 2 + h(X)Y = f(X)
h, f ∈ Fq[X], f monic, deg f = 2g + 1, deg h ≤ g (1)

for which no point (x, y) ∈ C satisfies both partial derivative equations. For
characteristic 2 one needs to have a non-zero h to achieve this quality. The
integer g appearing in (1) is called the genus of C. We concentrate on curves of
genus 2.
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The group one uses for cryptographic applications is the ideal class group
Cl(C/Fq) of C over Fq. This is the quotient of the group of fractional ideals
of Fq[X,Y ]/(Y 2 + h(X)Y + f(X)) by the group of principal ideals. As in the
case of quadratic imaginary fields, one finds ideals generated by two polynomials
〈u(X), v(X)+Y 〉 in each ideal class and there is a unique ideal for which deg(u)
is minimal. Actually, each class D̄ in Cl(C/Fq) can be represented by an ordered
pair of polynomials D = [u(X), v(X)], with u, v ∈ Fq,deg v < deg u ≤ g and u
monic satisfying u|v2 + hv + f .

The group operation in Cl(C/Fq) is performed by first computing the product
of the representing ideals and then reducing the result modulo the principal
ideals. This is the idea behind Cantor’s algorithm [Can87,Kob89].

Obviously, this algorithm has to depend on the properties of the input –
to derive explicit formulae one needs to study additions independently from
doublings. For a complete study of all possible inputs together with formulae we
refer to [Lan05].

3 Binary hyperelliptic curves with 2-rank one

In this contribution we concentrate on those binary genus 2 curves which are
given by an equation of the form

C : Y 2 + h1XY = X5 + f3X
3 + f2X

2 + f0. (2)

As shown in [ACD+05, Proposition 14.37] each curve with deg(h) = 1 can be
transformed to form (2) by isomorphic transformations and one can even place
further restrictions on the coefficients. For applications in cryptography exten-
sion fields of odd degree d are interesting. In this case one can require h1 = 1
and f2 ∈ F2 giving a unique representative per isomorphism class. In particular
this implies that multiplications with h1 and f2 need not be counted.

These curves are not completely generic – one would expect that a random
curve satisfies deg h = 2 and as there are only two free parameters one sees that
only O(q2) instead of O(q3) different curves can be reached. From the arithmetic
properties there is one particularity: the order of the ideal class group |Cl(C/Fq)|
is divisible by 2 and the 2-rank is only 1 instead of the maximal 2. It is known
that supersingular curves (i. e. curves of 2-rank 0) have a DLP which is easier to
solve as the Tate pairing maps the DLP from Cl(C/Fq) to F∗qk with a relatively
small k. So far no attack for curves of the form (2) is known.

Since on the other hand they offer big advantages [LS05] for implementations
it seems worthwhile to study arithmetic in inversion-free systems on them.

4 Inversion-free arithmetic

In this section we assume our reader to be familiar with [Lan05] and [LS05]. The
former reference contains a section on curves with deg(h) = 1 but the formulae
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were derived based on the general addition and doubling formulae. In fact, except
for the obvious savings due to zero coefficients there is no advantage in additions
but the doubling formulae are much more efficient for curves of form (2).

We briefly state formulae for projective coordinates P. For the additions
the changes are quite obvious and are simply obtained by fixing the respective
curve parameters to be zero. Hence, we only treat doublings there. Then we
introduce a new system of coordinates with completely different weights of the
coordinates. As there is apparently a clash in the names we refer to them as
“recent” coordinates R. For this system we also need to consider additions.

4.1 Doubling in projective coordinates

Doubling in projective coordinates
Input D̄ = [U1, U0, V1, V0, Z], precomputed values h2

1 and h−1
1 .

Output [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′] = [2][U1, U0, V1, V0, Z].
Step Expression Operations

1 precomputations 9M + 4S
Z2 ← Z2, z0 ← U2

0 , t1 ← U2
1 + f3Z2, w0 ← f0Z2 + V 2

0 , w1 ← z0Z2

z1 ← t1z0, w2 ← h2
1w1, w3 ← w2 + t1w0, w4 ← w0Z

s0 ← z1 + U1w4, w4 ← w4Z
2 compute U ′ 2M + S

U ′1 ← w1w2, U ′0 ← s2
0 + w2w4

3 compute V ′ 11M + S
w5 ← w0w4, V ′1 ← h−1

1

(
w2U

′
1 +

(
w3z1 + (f2Z2 + V 2

1 )w5

)
w4

)
w5 ← w5w4, V ′0 ← h−1

1 (w3U
′
0 + z0w5)

4 adjust 3M
Z ′ ← w5Z2, U ′1 ← U ′1w4, U ′0 ← U ′0w4

total 25M +6S

If h−1
1 is small one saves 2M , and if h1 = 1 — as one can always achieve for

odd extension degrees — 22M + 6S are used in total.

4.2 Recent coordinates in even characteristic (R)

We now propose the weighted coordinates [U1, U0, V1, V0, Z, z] with ui = Ui/Z, vi =
Vi/Z

2 and the precomputation z = Z2. Lacking a better name we refer to them
as recent coordinates R. These coordinates have the advantage of allowing faster
doublings while the additions are even more expensive. However, usually mixed
additions are chosen for implementations. They are not too much slower, and
furthermore, in windowing methods the number of additions is reduced consid-
erably.

The results in brackets refer to the case in which the second input is in affine
coordinates.
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Addition in recent coordinates
Input [U11, U10, V11, V10, Z1, z1], [U21, U20, V21, V20, Z2, z2]

Output [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′, z′] = [U11, U10, V11, V10, Z1, z1] + [U21, U20, V21, V20, Z2, z2]
Step Expression Operations

1 precomputation: 5M +S (none)
Z ← Z1Z2, z ← Z2, Ũ21 ← U21Z1, Ũ20 ← U20Z1

Ṽ21 ← V21z1, Ṽ20 ← V20z1

2 compute resultant r = res(U1, U2) 6M + S (5M + S)
y1 ← U11Z2 + Ũ21, y2 ← U10Z2 + Ũ20

y3 ← U11y1 + y2Z1, r ← y2y3 + y2
1U10

3 compute almost inverse of u2 modulo u1

inv1 ← y1, inv0 ← y3

4 compute s 8M (7M)
w0 ← V10z2 + Ṽ20, w1 ← V11z2 + Ṽ21

w2 ← inv0w0, w3 ← inv1w1

s1 ← (inv0 + inv1Z1)(w0 + w1) + w2 + w3(Z1 + U11)
s0 ← w2 + U10w3

5 precomputations 7M + S
Z̄ ← s1r, w4 ← rZ, w5 ← w2

4, S ← s0Z, Z ′ ← ZZ̄
s̃0 ← s0Z

′, s̄1 ← s1Z̄, s̃1 ← s̄1Z
6 compute l 5M

L2 ← s̄1Ũ21, l2 ← L2Z, l0 ← s̃0Ũ20

l1 ← (Ũ21 + Ũ20)(s̃0 + s̃1) + l2 + l0, l2 ← L2 + s̃0, h̃1 ← h1z
7 compute U ′ 8M + 2S

U ′0 ← r(S2 + y1(s2
1(y1 + Ũ21) + Zw5) + h̃1Z

′) + y2s̃1

U ′1 ← y1s̄1 + w4w5

8 precomputations 5M + S
w1 ← l2 + U ′1, U ′1 ← U ′1w4, Z̄ ← Z ′Z̄, l0 ← l0Z̄
w2 ← U ′1w1 + (U ′0 + l1)Z̄, Z̄ ← Z̄2

9 compute V ′ 6M + 2S
V ′1 ← w2s1 + (Ṽ21 + h̃1)Z̄, U ′0 ← U ′0r, w2 ← U ′0w1 + l0
V ′0 ← w2s1 + Ṽ20Z̄, Z ′ ← Z ′2, z′ ← Z ′2

total 50M + 8S (43M + 7S)

If h1 = 1 as we can always assume for d odd one more multiplication is saved
in Step 6.
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Doubling in recent coordinates
Input D̄ = [U1, U0, V1, V0, Z, z], precomputed values h2

1 and h−1
1 .

Output [U ′1, U
′
0, V

′
1 , V

′
0 , Z

′, z′] = [2][U1, U0, V1, V0, Z, z].
Step Expression Operations

1 precomputations 10M + 4S
Z4 ← z2, y0 ← U2

0 , t1 ← U2
1 + f3z, w0 ← Z4f0 + V 2

0

Z̄ ← zw0, w1 ← y0Z4, y1 ← t1y0z, s0 ← y1 + U1w0Z
w2 ← h2

1w1, w3 ← w2 + t1w0

2 compute U ′ 2M + S
U ′1 ← w2w1, w2 ← w2Z̄, U ′0 ← s2

0 + w2

3 compute V ′ 11M + 3S
Z ′ ← Z̄2, V ′1 ← h−1

1

(
w2U

′
1 + (w3y1 + f2Z

′ + (V1w0)2)Z ′
)

V ′0 ← h−1
1

(
Z̄(w3U

′
0 + y0w0Z

′)
)
, z′ = Z ′2

total 23M + 8S

For small h−1
1 we save 2M, if even h1 = 1 a total of only 20M + 8S is needed.

4.3 Different sets of coordinates

We now state the number of operations for curves of form (2) in even charac-
teristic. For the table we assume that Fq = F2d with d odd as this is the most
frequent case for the applications. We also include N to denote the new coordi-
nates from [Lan02]. Note that compared to the figures given in that paper ours
are computed on the basis of the much better doubling formulae from [LS05].

Doubling Addition

Operation Costs Operation Costs
2N = N 28M + 5S R+R = R 49M + 8S
2P = P 22M + 6S P + P = P 49M + 4S
2R = R 20M + 8S N +N = N 42M + 6S

— — A+R = R 42M + 7S
— — A+ P = P 39M + 4S
— — A+N = N 36M + 6S

2A = A I + 5M + 6S A+A = A I + 21M + 3S

This table allows to read off which coordinate systems should be chosen for
implementation depending on the ratio between inversions and multiplications.
If inversions are affordable the affine coordinates should be used as they offer to
use a very low number of operations.

If the input is in affine coordinates but one cannot perform one inversion
per group operation the choice of the coordinate system depends on the window
width, i. e. the ratio between doublings and additions and the ratio between
squarings and multiplications. If no precomputations can be made and a NAF
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of the scalar is used, one has twice as many doublings as additions in the worst
case. Even then the recent coordinates are most likely to be fastest as in the
mixed setting 41M + 11S are needed per bit while in P one needs 41.5M + 8S
and 44.5M+12S in N . In the average case where the NAF expansion has density
1/3 the figures reduce to 34M+10S, 35M+7.3S, and 40M+7S per bit respectively.
For larger windows recent coordinates are clearly the systen of choice. If the input
is not affine the same ranking holds showing that N is always least efficient and
R gains with the window size.

5 Compression

We now study the question of how to compress divisor classes [u, v] for a genus 2
curve given by (2). The compression technique proposed by Hess, Seroussi, and
Smart [HSS01] requires a factorization of u over F2d . If u splits then one can
recover two points P1, P2 ∈ C(F2d) such that the divisor class is represented by
D̄ = P1+P2−2P∞. Compression techniques like for elliptic curves can be applied
to P1 and P2 separately and one stores the x-coordinates of the points together
with one bit for each to determine the y-coordinate. This requires solving an
equation of degree 2 for each point in the compression and decompression. If
the polynomial u does not split it can be used to construct a field extension
K = F2d [X]/u(X). In K the second polynomial v(X) considered as a field
element is uniquely determined by one bit; the algorithm requires solving one
quadratic equation in K in the decompression step.

Obviously, the drawback of this method is that it is very hard to implement
arithmetic in the extension fields of degree 2 as their defining polynomials vary.
Furthermore, different routines are required to handle the two cases. This was
noticed by Stahlke [Sta04] who details an alternative compression technique on
genus 2 curves in odd characteristic.

We now present a corresponding method for curves of the form (2). The
representation by two polynomials [u, v] proposed by Mumford satisfies u | v2 +
hv+ f and deg(v) < deg(u) ≤ 2 for u monic. For deg(u) = 1 compression works
like in [HSS01] and on elliptic curves. Hence, we concentrate on deg(u) = 2 in
the sequel.

Assume that v is unknown and put (v2 + hv + f)/u = s for some unknown
s monic of degree 3. For h(X) = h1X formal division leads to s2 = u1 and
s1 = u2

1 + u0 + f3 and the solvability condition gives a system of equations

s0 + u1s1 + u0s2 + f2 = v2
1 + h1v1

u1s0 + u0s1 = h1v0

u0s0 + f0 = v2
0

in the three unknowns s0, v1, v0.
Insert v0 = h−1

1 (u1s0 + u0s1) in the last equation to obtain a quadratic
equation in s0

u2
1h
−2
1 s2

0 + u0s0 + h−2
1 u2

0s
2
1 + f0 = 0.
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By a change of variables this is transformed to

z2 + z +
u2

1(s2
1u

2
0 + h2

1f0)
h4

1u
2
0

, with s0 = z
h2

1u0

u2
1

.

To compute the respective values one proceeds as detailed in the following
table. The costs reflect the interesting case of odd d and thus h1 = 1; for com-
pleteness the general case is described. The costs of solving one equation of the
form T 2 +T +A = 0 are denoted by Q. Note that by construction this equation
is solvable in the ground field F2d and has two solutions z and z + 1. Thus,
one bit is sufficient to determine the correct solution. If — as usual — F2d is
represented with respect to a polynomial basis in some variable ξ one can use
the coefficient of ξ0 as encoding of the choice.

Decompression
Input D̄ = [u1, u0, b1, b0], precomputed values h2

1 and h−1
1 .

Output [u1, u0, v1, v0], with v1, v0 as prescribed by b1, b0.
Step Expression Operations

1 precomputations 1I + 4M + 2S
u′0 ← h2

1u0, U0 ← u′
2
0, U1 ← u2

1, w1 ← U0U1

w2 ← U1w1, w3 ← U0w1

2 compute s1

s′1 ← U1 + f3, s1 ← s′1 + u0

3 precomputations 2M + 1S
w4 ← u0s1, w5 ← w2

4, w6 ← u1s
′
1

4 compute s0 3M + 1Q
A← (h2

1f0 + w5)U1w1

solve T 2 + T +A and determine solution z by b0
s0 ← u′0zw2

5 compute v0 1M
v0 ← h−1

1 (u1s0 + w4)
6 compute v1 1Q

A← s0 + w6 + f2

solve T 2 + h1T +A and determine solution v1 by b1
total 1I + 10M + 3S + 2Q

If h1 6= 1 the values h−1
1 and h2

1 are precomputed and 1I + 15M + 4S + 2Q
are needed in total.

To compress one computes s0 ← v2
0+f0
u0

and z ← u1
h2

1u0
s0 in 1I + 3M + 1S and

puts b0 the coefficient of ξ0 in z and b1 that of v1.

Remark 1. Note that the more obvious order of first computing v0 and then s0

needs 1I+12M+1S+2Q which is more expensive assuming that squarings are less
expensive than multiplications. On the other hand, in this case the compression
is faster as v0 and v1 are both known.
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For comparison, the method in [HSS01] starts by computing A← u0
u2

1
and the

attempt to solve T 2 +T +A. If solutions exist they are determined and give rise
to x1, x2, the x-coordinates of P1, P2. Computing v(x1) and v(x2) by 2M reveals
the y-coordinates and hence b1, b0. Otherwise the coefficient of ξ0 in v0 fixes b0
and b1 is not used. Thus 1I + 5M + 1S + 1Q are needed for compression in the
worst case.

To decompress in the first case, the recipient determines x1, x2 by the same
procedure as above and computes yi by solving T 2 + h1T + f(xi). Finally, v =
y1+y2
x1+x2

x+ y1x2+y2x1
x1+x2

. In total, 2I + 11M + 2S + 3Q are needed.
If u is irreducible one solves T 2 + h1T + f(X) in K = F2d [X]/u(X), i. e. first
f is reduced modulo u in 4M + 1S and then the quadratic equation is solved.
Solving the equation in the extension field corresponds to at least 3Q and the
even more complicated problem of working in the extension field on the fly. As
the costs for solving quadratic equations are dominant, this case is also more
expensive than in our proposal.

6 Conclusion

We presented inversion-free systems for binary genus 2 curves of a special form
which leads to particularly fast doublings. The advantages of this special case
described in [LS05] for affine coordinates carry over to these coordinate systems:
the proposed formulae require far less operations than the general ones con-
sidered in [Lan05]. Our work is ready to implement and adopts to the special
requirements of the device by offering a choice of coordinate systems.

A new and more efficient compression algorithm in the spirit of Stahlke com-
pletes the study. We would like to point out that a similar algorithm seems to
be hard to find for the case deg(h) = 2.

The present version does not include any timing results as the effects are
less visible in software. We hope to present some actual timings on the RFID
workshop.
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Abstract. This article scrutinizes the suitability of Elliptic-Curve Cryp-
tography (ECC) as a technology for solving security concerns of RFID
systems. The article focuses on the technical feasibility of realization:
Can ECC be implemented on RFID tags without increasing the price
of tags too much due to high circuit complexity? Does ECC consume
so little power that the operative distance of passively powered RFID
tags is not shortened? The article summarizes requirements which have
to be met and analyzes how hardware implementations of ECC can be
scaled down to a minimum. The architecture of an ECC-enabled tag is
presented. A core element of the tag is an arithmetic unit for computing
ECC that is tailored for constricted environments where low-area and
low-power optimizations are crucial. The results obtained with the new
ECC architecture show that the implementation of ECC on RFID tags
seems to be viable when 180-nm CMOS process technology is used for
manufacturing RFID tags.

Keywords. Elliptic-Curve Cryptography, RFID Technology, Dual-Field
Arithmetic, Montgomery Multiplication, Low-Power Optimization.

1 Introduction

Radio Frequency Identification (RFID) produced much interest during the last
couple of months. The interest was mainly twofold. On one hand, RFID tags—
small wireless chips with an little antenna—can be used to label all kind of
goods. The long-term purpose of RFID tags is to replace printed barcodes by
RFID tags which allows making logistics processes more efficient. On the other
hand, the pervasive use of RFID technology entails security concerns which have
to be handled. The data protection working party of the European Commission
addressed this topic [1]. They analyzed that many data protection and privacy
implications of RFID technology must be sorted out to raise the acceptance of
the new technology. Measures to achieve these goals comprehend legal matters,
organizational measures, and technical solutions. In this article we investigate
how elliptic-curve cryptography helps to raise information security of RFID tags.
In particular, the feasibility of implementing ECC on RFID tags is scrutinized.



Some months ago, first steps were made to implement strong cryptography
on RFID tags. Martin Feldhofer et al. reported the first implementation of the
AES algorithm that fulfills the stringent area and power requirements of RFID
tags [2]. On a mature 0.35 µm CMOS process technology, on which most RFID
tags are manufactured today, they reported an AES implementation with a com-
plexity of 3,500 gates. Its power consumption is only 0.045 mW/MHz which is
fairly below the requirements of RFID tags.

Symmetric encryption like the AES algorithm will surely help securing RFID
tags. But symmetric encryption cannot solve all security concerns of RFID tech-
nology. A major hindrance is the key distribution issue. Most applications of
RFID are open systems where not all parties are trusted. Key distribution must
ensure that only trusted parties can obtain keys. Proving the genuineness of
RFID-labeled products is an application where symmetric cryptography suc-
cumbs asymmetric techniques: Everyone who wants to prove the genuineness
of a labeled good has to possess the according symmetric key but this allows
. . . Another application example where asymmetric cryptography excels sym-
metric cryptography is privacy-enhancing behavior to prevent tracking. When
RFID tags should only respond to authenticated readers, no tracking of goods
(and customers) is possible by unauthorized readers. Symmetric cryptography
demands the tag to store the keys of all authorized readers. Contrary, asymmetric
cryptography can achieve this by storing a single certificate.

Elliptic-curve cryptography is a candidate technology to secure RFID sys-
tems. Moreover, ECC is the only technology that can cope with heavily con-
stricted resources. RFID tags have very limited silicon area due to economical
reasons. The silicon area of a tag determines its cost. The power consumption
of RFID tags is very limited too because they are powered over the air inter-
face by the reader. To save power, the clock frequency of RFID tags is often
below 1 MHz. This affects also the throughput and the latency of cryptographic
operations.

This article explores the feasibility of integrating elliptic-curve cryptography
in RFID tags. To our knowledge, this is the first article covering this topic. We
investigate an ECC-enabled tag and estimate how much resources the implemen-
tation of strong asymmetric cryptography will cost in terms of silicon area and
power consumption. A central element is a very compact dual-field arithmetic
unit. This novel arithmetic unit is capable to calculate addition, multiplication,
and also inversion in the finite fields GF(2m) and in GF(p). The article also gives
reliable estimates how much resources a small ECC processor needs and which
CMOS technology is suitable to manufacture secure RFID tags.

The discussion about ECC-enabled RFID tags starts with writing down limi-
tations for implementing RFID tags in §2. §3 analyzes possibilities to scale hard-
ware implementations of ECC to a minimum in order to save area and power.
§4 presents the architecture of an ECC-anabled RFID tag. The core component
of the tag, a novel dual-field arithmetic unit, is presented in closer detail in §5.
§6 gives a summary of results achieved by the new approach. §7 concludes the
article and gives an outlook on further developments and possible improvements.



2 Technical and Economical Restrictions of RFID Tags

ECC seems to be the most appropriate technology for implementing strong
asymmetric cryptography on RFID tags. ECC can be implemented using least
resources compared to other technologies. Asymmetric cryptography can be im-
plemented by many different algorithms. RSA signatures and Diffie-Hellman key
establishment are widely used algorithms which are not feasible for RFID sys-
tem due to their large operand sizes of 1024 bits and more. Other asymmetric
algorithms like XTR and NTRU are often mentioned when resource-optimized
implementations are the primary objective. These algorithms are prone to secu-
rity weaknesses which demanded repeatedly increasing key lengths in the past.
This opposes resource-efficient implementations.

Today, ECC is favored in resource-constrained environments like smartcards
where silicon area is sparse and electrical power is limited. This is reasoned by
the fact that ECC is contented with much smaller cryptographic key sizes. At
present, ECC keys range from 163 bits to 283 bits. Hardware implementations
of ECC benefit from short key sizes because ECC processors use less silicon area
and consume less power. Moreover, short wordsizes of ECC needs less memory
for parameter storage and they save bandwidth during communication.

In this article, we constrict the analysis of RFID systems to passively powered
tags operating at a frequency of 13.56 MHz that conform to the ISO 18000-3
standard [4]. This constriction does not take 125 kHz and UHF systems into
account which play too a significant role in the RFID market too. Nevertheless,
13.56 MHz systems do represent the majority of RFID tags being used in supply-
chain applications. Security concerns of supply-chain applications are the most
urgent challenge because they influence the public opinion most.

The silicon area of RFID tags ranges typically between 0.1 mm2 and 1 mm2.
The size of RFID tags is an important issue for the economical success of the
product. The price of a tag grows with the silicon area. Smart tags—like secure
tags, which offer additional functionality—may have higher prices due to their
added value. Thus, the area requirements for ECC-enabled tags are somewhat
difficult to pin down. An upper limit of 1 mm2 seems to be realistic.

The requirements for the power consumption can be defined more precisely.
Excessive power consumption reduces the operative range of RFID tags. ISO-
18000 tags have an operative range of roughly 1 m. If the power consumption
of the tag exceeds the maximum, the supply voltage of the tag drops below a
threshold. This will trigger the hardware reset of the tag and render all pre-
vious communication and computation useless. A consequence of high power
consumption is a shortened operative range because the power supply by the
reader’s magnetical field drops with the third power of distance. In supply-chain
applications, a short operative range will be a hindrance for the proliferation of
RFID tags. Thus, low power consumption is even more strict than silicon area.
Power consumption up to 30 µW has no impact on operative range of RFID
tags.



3 Scaling ECC to its limits

Although ECC is an economical technology, its computational effort is too high
to make software implementations on 8-bit or 16-bit platforms possible. To of-
fer reasonable performance, dedicated hardware is necessary. General purpose
processors implementing ECC are not useful for RFID tags. The most obvi-
ous argument is the size of the processor. Computing ECC in acceptable time
requires using of 32-bit processors. Such processor cores have a complexity of
50,000 gates and more. This complexity does not include memories like RAM
and ROM. Besides being too large for integration on RFID tags, circuits of this
size consume considerable power. RFID technology demands dedicated ECC
hardware that is tailored to the specific needs and limitations.

There are several options for implementing ECC on hardware. One elemen-
tary choice is the underlying finite field. Most hardware implementations opt
for the finite field GF(2m) using polynomial basis representation. Unfortunately,
ECC cannot be implemented using exclusively binary-field arithmetic. EC cryp-
tographic primitives also require conventional integer arithmetic. For instance,
the elliptic-curve digital-signature algorithm ECDSA needs conventional mod-
ular arithmetic too for computing the signature pair (r, s): r = Rx mod n,
s = k−1(e + dr) [6]. The vast majority of finite-field operations is needed to
compute the scalar multiplication (Rx, Ry) = k · (Gx, Gy), which is the central
operation of ECC. The security of all EC cryptographic primitives relies on this
operation. The computation of R = k · G is based on repeated point doubling
and point addition: R =

∑m−1
i=0 ki2i · G, ki ∈ {0, 1}. Formulas for point dou-

bling and point addition are computed by arithmetic operations in the finite
field underlying the elliptic curve. A point operation comprehends roughly 10
finite-field multiplications, several additions, and other simple operations. Most
often, EC points are represented in projective coordinates to avoid the most
costly finite-field operation: inversion.

The scalar k has roughly 200 bits. Thus, the computation of an EC primitives
comprises approximately 300 point operations which in turn require roughly 3000
finite-field multiplications. The efficiency of finite-field multiplication determines
significantly the overall efficiency of an ECC implementation. The silicon size and
the computing speed are determined widely by finite-field multiplication. Opti-
mizing finite-field multiplication is the key for efficient ECC implementations.

Another very basic design decision is the question whether the 200-bit finite-
field elements should be processed at full precision or at smaller wordsizes—let’s
say 32 or 64 bits. Processing operands at full precision allows fast data transfer
between computing elements and memories. This approach is also very efficient
from the computational point of view. It lowers the computing complexity of
ECC from O(m3) to O(m2) when m ist the wordsize [10]. The reason for this is
that full-precision multiplication has a complexity of O(m). When operating on
smaller wordsizes it has a complexity of O(m2).

The modular multiplication is the crucial operation of ECC. Thus, it is most
efficient to improve the multiplier. For instance, increasing the multiplier’s de-
gree of parallelism improves the operational speed more than any other measure
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having the same cost. For most RFID applications, a bit-serial multiplier will
suffice.

Similar considerations can be made about other operations. Accelerating op-
erations like inversion, which are used only infrequently, does not pay off. Pro-
viding extra hardware for inversion will not improve the area-delay product of
the circuit. It is more advisable to skillfully reuse existing circuitry. For instance,
exponentiation can compute inversion by iterating multiplications.

3.1 Related Work

In literature, only a few hardware implementations of ECC try to minimize
silicon area and to consume low power [3, 8]. None of these ECC implemen-
tations were designed with RFID as intended target application. Nevertheless,
they have similar optimization goals. The elliptic-curve digital-signature chip of
R. Schroeppel et al. is able to calculate a complete EC signature [8]. It includes a
hash module and a random number generator. It is not able to produce standard-
conform signatures because it uses a modified signature scheme to avoid inversion
in GF(p) and operates in the tower field GF(2892

) that is not recommended by
any standard.

J. Goodman et al. presented a VLSI implementation of an ECC processor
[3]. Their so-called domain-specific reconfigurable cryptographic processor can
calculate all operations required for elliptic-curve cryptography including inver-
sion. The datapath has limited possibilities for reconfiguration and allows to
adapt the hardware to shorter finite fields. A 1024-bit silicon implementation of
the processor has a silicon area of 8.4 mm2 on a 0.25 µm CMOS process. No
performance figures are given for EC operations. The processor is optimized for
low-power operation.
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4 Architecture of an ECC-Enabled RFID Tag

Our proposal for computing ECC on RFID tags is an ECC processor tailored for
the RFID specific requirements. The whole tag including the ECC processor is
depicted in 1. The ECC processor is a dedicated hardware implementation. Its
main component is a sophisticated dual-field arithmetic unit, which is presented
in detail in §5.

The ECC-enhanced RFID tag has typical components like any other RFID
tag has: An analog frontend supplies the chip with power by rectifying the 13.56
MHz carrier received from the reader. The analog frontend also extracts a clock
signal from the carrier, demodulates communication from the reader to the tag
and does the load modulation for sending responses to the reader. The digi-
tal frontend and the RFID controller handle the ISO-18000 protocol. The non-
volatile RAM stores the unique ID of the tag, which is used for identification
and anti collision. The proposed ECC-enabled tag stores also EC data in this
memory. EC data comprehends the private key and possibly the public key and
other certificate-related data.

The ECC processor is a stand-alone processor which needs no external in-
teraction for computing EC operations. It consists mainly of an arithmetic unit,
which actually does all the computations. Further components are a register file
for storing EC parameters and intermediate results during the computation. A
control unit sequences the operations of the arithmetic unit and addresses the
register file.

The ECC processor computes all arithmetic operations in the Montgomery
domain. It uses an arithmetic unit that operates on the full wordsize. The se-
quence of arithmetic operations for computing ECC must assure that interme-
diate results cannot grow larger than the hardware size of the arithmetic unit.
Therefore, the hardware is some bits larger than the wordsize of the EC param-
eters.



The ECC processor is depicted in Figure 2. It is optimized for use in heavily
constrained systems and for applications where EC parameters do not change
during the product’s lifetime. This is definitely the case for RFID tags. A whole
batch of RFID tags will be produced sharing the same public EC parameters.
Thus, it is economical to optimize the ECC processor for these parameters and to
produce an own set of reticles for production to save silicon area. A considerable
amount of silicon area can be saved when EC parameters are fixed. On one hand,
they do not have to be stored in the costly non-volatile memory. And on the
other hand, the ECC processor has not to provide a large register file where
they are loaded to during processing. Figure 2 shows that EC parameters can
be stored in two small ROM blocks. ROM2 has only two entries: the modulus
and the order n of the base-point G. ROM1 has only four entries: the remaining
curve parameters. ROMs of this size can be easily realized by combinational logic
rather than true ROM circuits. The RAM block needs eight entries to store all
intermediate results during computation. RAMs of this size can be implemented
as a register files made up of flip-flops or latches. Clock gating is an appropriate
technique to lower the power consumption of register files.

Most of the ECC processor’s area is occupied by the full-precision datapath
consisting of the arithmetic unit and the memories. Control units, which steer
modular multiplication and sequence finite-field operations to compute EC point
operations, are much smaller in comparison. Nevertheless, controlling ECC op-
erations is not a trivial task. In order to reduce the complexity of the control
tasks the functionality is split into three different levels as shown in Figure 2.
One unit controls finite-field arithmetic, another unit controls EC-point opera-
tions including the conversion of points into affine coordinates. The third unit
controls the scalar multiplication. The control unit for finite-field operations,
is constricted to count the cycles of modular multiplication which is the only
instruction of the arithmetic unit which takes more than one cycle. For the re-
maining control tasks, an highly optimized 4-bit RISC controller is used. The
RISC controller executes one operation per clock cycle and has a proprietary
instruction set that is tailored to control hardware datapaths efficiently. It does
not compute any algorithms—it just steers the datapath. This task demands
only a few instructions. Most of it are move instructions and bit-oriented in-
structions. Besides controlling EC operations, the controller can be reused to do
simple IO tasks. We proved on FPGA prototypes that processing the ISO-18000
protocol can easily done by the RISC processor. Software for the controller is
written in a macro-assembler language. The syntax of macros conforms to Java
allowing to write fairly complex programs that are still concise. The compiled
program ist stored in a ROM of 12-bit wordsize. Roughly 500 ROM entries are
necessary for implementing ECC over GF(p), roughly 300 for ECC over GF(2m).
A RAM size of 8 bytes—organized in 4-bit nibbles—is sufficient for both ECC
implementations.
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5 A Very Compact Arithmetic Unit for ECC

The arithmetic unit of the ECC processor is the most important part. It is a very
compact arithmetic unit that combines operations in GF(2m) and in GF(p) in a
novel way. The compactness of the circuit is achieved by rigorously reusing hard-
ware for implementing various finite-field operations. The dual-field arithmetic
unit has the smallest footprint reported in literature. It supports operations like
addition, subtraction, squaring, multiplication, and inversion in both fields. The
complete set of instructions is needed for generation and verification of signatures
over GF(2m), which demands operations in GF(p) too.

The proposed dual-field arithmetic unit processes operands at full precision.
It has a short critical path to prevent undesired power consumption caused by
glitches. The critical path remains even short when the arithmetic unit is scaled
for future key sizes. Low silicon area is guaranteed by using a bit-serial version
of Montgomery’s algorithm for multiplication. The GF(p)-multiplier hardware
resources are rigorously reused for GF(2m)-multiplication and for other opera-
tions. The bunch of operations offered by the arithmetic unit allows calculating
the multiplicative inverse in both fields. The most stunning feature is its com-
pactness in terms of silicon area: all the offered functionality costs only slightly
more than a mere multiplier for operation in GF(p).

The dual-field arithmetic unit depicted in Figure 3 computes modular mul-
tiplication using the Montgomery method. Montgomery multiplication circum-
vents laborious remainder calculation [5]. It must neither calculate a computat-
ional-intensive division nor use quotient estimating techniques. Its preeminence
is reasoned by the simplicity of its interleaved modular reduction step. Mont-
gomery multiplication works also in GF(2m). Both algorithms are quiet similar.



Table 1. Operations offered by the Montgomery dual-field arithmetic unit.

Operation Operation

Name Function Name Function

clear (s, c) = (0, 0)
hold (s, c) = (s′, c′) → (s′′, 0) load (s, c) = (a, 0)
add (s, c) = (s + a, c) sub (s, c) = (s− a, c)
shftl (s, c) = (2s, 2c) shftr (s, c) = ((s + p · q)/2, c/2)
muli=0 (s, c) = (a · b0, 0) muli>0 (s, c) = ((s + p · q)/2 + a · bi, c/2)

This helps to save hardware resources in a dual-field approach. Both algorithms
can use the same result register, the same partial-product generator, the same
control logic, and the same shifter for bi because the multiplier b is processed in
both cases from LSB to MSB.

Montgomery multiplication calculates not directly a modular multiplication
but MonMul(a, b, p) = a · b/R mod p where R = 2m mod p. The constant m re-
flects the hardware size. For using Montgomery multiplication efficiently, input
data has to be converted into the so-called Montgomery domain before cal-
culation. A conversion back from the Montgomery domain is needed after all
calculations have finished. Both conversions can be calculated by Montgomery
multiplication and require no additional resources. These considerations are es-
sentially the same for the finite field GF(2m).

When computing ECC, all curve parameters and input data have to be con-
verted beforehand. After computing the EC scalar multiplication, the result has
to be converted back from the Montgomery domain. If all EC parameters are
pre-computed, the conversion requires only two Montgomery multiplications to
obtain the result—a negligible overhead compared to the savings achieved by
Montgomery multiplication.

The arithmetic unit is able to handle negative numbers which might result
from subtractions in GF(p). Although, they are converted immediately into their
least non-negative residue to avoid sign-bit testing in subsequent multiplications.
Another interesting feature of the arithmetic unit is the use of a redundant
number representation for storing intermediate GF(p) results. This allows scaling
the arithmetic unit for arbitrary precision without affecting the maximum clock
frequency. Results of GF(p) operations have to be converted from redundant
representation to binary representation before output. This saves memory, bus
bandwidth, multiplexing logic, and eases communication.

The dual-field arithmetic unit offers many finite-field operations in GF(2m)
and in GF(p). Different operations reuse existing hardware resources skillfully.
Table 1 shows a list of offered operations. The table does not list GF(2m)-
operations and GF(p)-operations individually because most operations are mean-
ingful in both fields. The clear and the load operation are simple operation which
are obviously useful. The add and sub operations take one operand from the
register file and the other one from the result register. The partial product gen-



erator is able to pass a for addition and a for subtraction. The two’s complement
−a = a + 1 is calculated by adding 1 at the lower carry-save adder.

The dual-field capability of the arithmetic unit is achieved by using different
adders for GF(p) than for GF(2m). Addition in GF(p) conforms to conventional
integer addition whereas addition in GF(2m) is a bit-wise XOR function. Addi-
tion in GF(p) makes use of full-adders by calculating a carry-save addition. Car-
ries ci are saved instead of being propagated to the next full adder. Addition in
GF(2m) is a bit-wise XOR function. The desired XOR function is sub-function of
CSAs when the third input is fixed to 0. Thus, supporting operations in GF(2m)
causes nearly no overhead.

The hold operation maintains the results in the registers R and S. It is
not a trivial operation as it seems—at least not for operation in GF(p). The
hold operation can convert GF(p) integers from redundant representation into
binary representation. During each hold cycle the two CSAs propagate the carry
information until it vanishes. Issuing a hold operation for four cycles will convert
nearly all integers smaller than 256 bits from their redundant representation
into their binary representation because the longest carry chain is on average
log2 m bits. If GF(p) results are negative the modulus is added until the result
is positive.

The most important operation offered the dual-field arithmetic unit is modu-
lar multiplication. As already mentioned, a bit-serial version of the Montgomery
algorithm is used. To be more precisely, a modified version of Montgomery’s origi-
nal algorithm is used. Holger Orup presented variants of Montgomery’s algorithm
which are more convenient for hardware implementation [7]. Orup simplified the
quotient determination at the cost of an additional iteration. The benefit for
a hardware implementation is that the quotient q can be registered before it is
used. This inhibits glitching activity which is crucial for low-power optimization.
While multiplying, partial products a · bi are accumulated. Multiplier bits bi are
processed from LSB to MSB.

Inversion in the Montgomery domain calculates MonInv(a′) = a−1 ·R = a′−1 ·
R2. Our implementation utilizes the extended Euclidean algorithm to calculate
the division.

Remaining operations of the dual-field arithmetic unit are shift operations:
shiftl and shiftr. The shiftl operation does not involve a modular reduction step.
The shiftr operation is especially useful because it is required for calculating
modular inverses by the extended Euclidean algorithm. When shiftr is executed,
the modulus is added in case the value is odd. This operation is essentially the
same as the aligning of intermediate result during multiplication. Shift operations
without modular reduction are useful for serial input and output.

The architecture of the presented dual-field arithmetic unit corresponds wide-
ly to a pure GF(p) multiplier. This in turn, accounts for the low amount of
resources used for hardware realization although many operations are offered.
The arithmetic unit shown in Figure 3 mainly consists of two carry-save adders,
some multiplexers, and three registers. Each of these components handles full-
precision operands. The control unit generates control signals for the datapath by



Table 2. Cycle count of operations for different hardware sizes.

GF(p) GF(2m)

Size Mult. Inv. EC Size Mult. Inv. EC

192-bit 197 11,200 677,500 191-bit 197 6,200 426,300

224-bit 229 14,400 904,900 233-bit 241 7,500 635,100

256-bit 261 17,700 1,175,500 283-bit 289 8,800 920,600

decoding input operations. It contains a counter for controlling multiplications.
Registers S and C store intermediate results (s, c). Register B stores the multi-
plier b which is processed bit-by-bit during multiplication. The upper carry-save
adder is used for interleaved modular reduction. It adds an appropriate multiple
of the modulus p to previous intermediate results (s, c). Carry-save adders (CSA)
are implemented by conventional full-adder cells. The lower CSA accumulates
partial products. Partial products are generated by a multiplexer: either a or 0
is selected.

In literature, J. Wolkerstorfer presented a dual-field arithmetic using a similar
approach as we do [9]. His approach is based on a bit-serial dual-field multiplier.
Contrary to our approach, conventional modular multiplication is used instead
of using Montgomery’s algorithm. His approach consumes 0.69 mm2 on a 0.35
µm CMOS process. This is 50% larger than our approach.

6 Results Obtained

The results obtained by the new ECC processor are analyzed regarding perfor-
mance in terms of cycle count and maximum clock frequency. Resource efficiency
is measured in terms of silicon area and power consumption.

Most of the operations offered by the arithmetic unit are are single cycle
operations. Only Montgomery multiplication is a multi-cycle operation. The ac-
tual number of cycles needed for multiplication depends on the hardware size
and is shown in Table 2. Inversion is a compound operation. Using the extended
Euclidean algorithm which exploits the shiftr operation, inversion takes on av-
erage 70 times longer than multiplication in GF(p) and 35 times longer than
in GF(2m) (see Table 2). These timings advise to use projective coordinates
for implementing elliptic-curve cryptography to avoid inversions. Table 2 also
gives cycle counts for running an EC scalar multiplication. The numbers include
back-conversion of results from projective coordinates to affine coordinates. A
Montgomery ladder was used for calculating the scalar multiplication in both
GF(p) and in GF(2m). The cycle count includes overhead for control.

The presented ECC processor was realized using a VHDL description. The
VHDL model was synthesized on a 0.35 µm CMOS process. The amount of
required hardware resources grows linearly with the wordsize parameter of the
arithmetic unit. This is not surprising because the fraction of hardware resources
required for control is small (< 13%). The largest amount of control resources



Table 3. Silicon area of the ECC processor on a 0.35 µm CMOS process.

EC size HW size Area: arith+ram+risc+romrisc Gate count fmax

[bit] [bit] [mm2] [GE] [MHz]

192 196 0.449 + 0.662 + 0.079 + 0.12 = 1.31 23,800 68.5

224 228 0.544 + 0.776 + 0.076 + 0.12 = 1.51 27,500 68.5

256 260 0.615 + 0.888 + 0.077 + 0.12 = 1.70 31,000 68.5

requires the program memory which (0.12 mm2). The standard-cell circuitry
of the RISC controller uses only 0.08 mm2. Table 3 details the area demands.
A 196-bit arithmetic unit has an area of 0.45 mm2 which equals 8,200 gate
equivalents (36 %). EC parameters are stored in two small ROMs, which are
realized as combinational logic. These ROMs do not contribute to the total area
(< 0.1%). In contrast, the register file, which is realized by flip-flops, contributes
with 51 % to the total area.

The performance of the ECC processor depends on its maximum clock fre-
quency. The clock frequency is determined by the critical path which is inside
the RISC processor. On the 0.35 µm CMOS process, a maximum clock frequency
of 68.5 MHz is possible. This allows to compute nearly 100 EC operations over
GF(p192) per second. GF(2191) performance is even higher: 150 EC operations
per second. The length of the critical path does not depend on the hardware size.
The short critical path can be exploited for low-power operation: running the
arithmetic unit not at maximum clock frequency allows decreasing the supply
voltage. This can effect substantial power savings. Spice-level accurate simulation
of the circuit using the NanoSim simulator from Synopsys indicate an average
current of 80.0 µA at 1 MHz, 3.3 V for the 196-bit datapath. The complete ECC
processor has an estimated total power consumption of 500 µW/MHz. Opera-
tion at much lower supply voltages is possible. At 1.5 V, the power consumption
will be approximately 125 µW/MHz.

The proposed ECC processor is very competitive with related work regarding
silicon area and power consumption. The elliptic-curve digital-signature chip of
R. Schroeppel et al. has a complexity of 191,000 gate equivalents [8]. It takes 4.4
ms for a signature when operated at 20 MHz. No power figures are given.

J. Goodman et al. reconfigurable cryptographic processor has a bit-slice ar-
chitecture [3]. If we shorten their 1024-bit architecture to 196 bits and move
from 0.25 µm to 0.35 µm CMOS, it will require roughly 3.15 mm2. This is 140
% more than our approach. The clock frequency on a 0.25 µm CMOS process is
stated to be 50 MHz. No performance figures are given for ECC but they must
be similar to ours when using same EC algorithms. The power consumption is
normally 1.5 mW/MHz.

The silicon area of the 192-bit ECC processor is 1.31 mm2. This is nearly
acceptable for security enhanced RFID tags. An interesting question is how
this size decreases when moving to more advanced process technologies. Table
4 summarizes the estimates for moving to 180-nm and 90-nm technologies. 180-



Table 4. Scaling the ECC processor to 180-nm and 90-nm CMOS technologies.

CMOS Technology ECC Processor

CMOS VDD Power/gate Area Power ECC Budget fECC GF(p192) GF(2191)
lgate [V] [nW/MHz/gate] [mm2] [µW/MHz] [µW ] [kHz] [s] [s]

0.35 µm 3.3 45 1.31 500 30 60 11.3 7.1

180 nm 1.8 15 0.35 170 30 175 3.9 2.5

90 nm 1.0 5 0.09 55 30 545 1.3 0.8

nm CMOS is a familiar technology for manufacturing RFID tags. 90-nm CMOS
might be used in some years. Manufacturing the ECC processor on a 180-nm
technology shrinks the circuit size to 0.35 mm2—this well below the required 1
mm2. At 90-nm, the size of the ECC processor is only 0.09 mm2.

Analyzing the power consumption of the ECC processor on different CMOS
technologies shows a less convincing picture. On the 0.35-µm technology, the
assumed power budget of RFID tags of 30 µW is exhausted, when the processor
is clocked with 60 kHz only. It is assumed that the power budget does not change
when the tag is manufactured using a different technology. Moreover, we assume
that only 50% of the ECC processor is active because 90% of the register file,
which takes 51% of the total area, has surely no activity due to clock gating.
To meet the power requirements, the clock frequency can be lowered. Clocking
the ECC processor at very low frequencies causes long computation times: 11.3
seconds for a EC operation over GF(p192). Operation over GF(2m) is somewhat
faster. Moving to more advanced technologies allows to clock the circuit at 175
kHz and at 545 kHz, respectively, which lowers the computation times to 3.9 s
and 1.3 s. The computation time of EC operations is rather long. This has to
be considered by the protocol layer. By interleaving requests and responses, a
large number of tags can perform security functions without deteriorating the
throughput.

7 Conclusion

In this article we presented an ECC processor that fits the requirements of RFID
tags. A central element of the ECC processor is a novel arithmetic unit. The
dual-field arithmetic unit is able to calculate all arithmetic operations required
for ECC computation: addition, multiplication, and inversion in the finite fields
GF(p) and GF(2m). Bit-serial multiplication is calculated by an improved version
of Montgomery’s algorithm. A 196-bit implementation of the ECC processor on
a 0.35 µm CMOS process has an area of 1.31 mm2 and can be clocked with 68.5
MHz. On a 180 nm CMOS process, the area will shrink to 0.35 mm2 which is
acceptable for RFID tags.

Although ECC is small enough to fit RFID tags, the power consumption of
ECC operations is still a problem that has to be solved. Our approach to meet the
power requirements of RFID tags by lowering the operational frequency of the



ECC processor might inhibit applications where latency is of importance. The
estimated computation time of 0.8 s up 3.9 s might jeopardize the acceptance.
In future, we have to look out for even more power efficient implementations
and utilize possibilities on all layers. For instance, the circuit could be made
more power efficient by replacing the RISC controller by hardwired control that
demands no program ROM. The register file has also a scope for improvement
by moving to a latch-based design. Beyond the ECC processor are opportunities
too: Cryptographic functionality could only be made available when the tag is
close to the reader where the power supply is much better. Another possibility
is adopting the clock frequency to the available power.
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Abstract

We here prove the feasibility of exchanging some secret data between
an RFID tag and its reader by public discussion. For this, the inherent
noise on their communication link is exploited and classical protocols are
adapted to these small devices. More precisely, we first present the canvas
of our study and discuss the advantage distillation phase. Then, we show
how Brassard and Sailvail’s Cascade protocol can be modified in order to
reduce the hardware implementation cost while still maintaining adequate
correction rate and tolerable leaked information during the reconciliation
phase. Finally, as for the privacy amplification phase, we point out Kaan
Yüksel’s work on low-cost universal hash functions, achieving to allege
that public discussion under noisy environment might be an interesting
possibility for low-cost RFID tags.

1 Introduction

An RFID tag is a small device which consists of an integrated circuit attached to
an antenna capable of transmitting wirelessly a sole identifier at several meters
to a reading device in response to a query.
Securing the RFID systems transmissions is of great concern [8]. Its difficulty
comes mainly from two major problems. First, the distribution of keys to billions
of products. Second, the inability for such low cost devices to handle classical
arithmetic based solutions. Many solutions have been proposed so far [11].
Here we go through a completely different track and use the channel noise as
it is done in [1], so as to suggest a protocol whose hardware implementation is
simple and which ensures that the exchanges in an RFID system be confidential
when a passive eavesdropper is present.
After an initialization step in which a damaged version of a bit string sent by a
reader is received by a tag and possibly an eavesdropper, the protocol consists
essentially in three phases:

∗The work presented in this paper has been exclusively supported by SAGEM S.A.
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• Advantage distillation – The legitimate parties turn the situation to their
advantage if necessary,

• Information reconciliation – They apply correction techniques to come to
a common string about which the adversary only has partial information,

• Privacy amplification – By applying a universal hash function, they obtain
another string about which the adversary almost has no information.

First in section 2, we show the benefit of increasing the initial given advan-
tage between the RFID tag and its reader against an eavesdropper in order
to straighten out the subsequent computations. As for the information recon-
ciliation phase, a slightly modified version of Cascade optimized for low-cost
hardware implementation is described and analyzed in section 3. Then in sec-
tion 4, the choice of a universal class of hash functions in the privacy amplifi-
cation phase is motivated. Yet, a complete scenario for our proposed design is
summarized in section 5. Section 6 concludes.

2 Gaining the advantage

The so-called satellite scenario can be described as follows: A bit string S sent
by a satellite is received by three entities R, T and E as SR, ST and SE

with different noise patterns characterized respectively by pR, pT and pE . R

and T can subsequently communicate over an error free channel while E is
eavesdropping their communication.
The probability that a given bit r from S is received as x is given by:

pSR|S=r(x) = (1 − pR)
n−dH(x,r)

p
dH(x,r)

R

pST |S=r(x) = (1 − pT )n−dH(x,r)p
dH(x,r)

T

pSE|S=r(x) = (1 − pE)
n−dH(x,r)

p
dH(x,r)

E

where dH denote the Hamming distance.
The worst case is achieved when both pR and pT are greater than pE . Should
that be the case, R and T have to perform an “advantage distillation” phase
to gain the advantage over E i.e. to eventually get less errors than E.
The Bit Pair Iteration Protocol introduced in [4] turns out to be a quite efficient
one implementing the advantage distillation phase. R and T group their bits
by pair and then tell each other the parity of each pair. If both parities do
not match, then R and T get rid of the pair. Otherwise, they undertake to
keep the information associated with the involved pair while giving E as little
information as possible. Namely, they keep only the first bit of the pair since E

globally got one bit of information about the pair from its parity. The retained
bit might still differ, but it can be shown that R and T’s bits agree more and
more each time the process is repeated [4].
For our purpose, let R be the reader, T be the tag and E be some passive eaves-
dropper. Then either R or T has to send the initial string S in the satellite’s
place. If R is the initial sender (see Figure 1), then pR = 0 and pT > 0.
Let the communication channels R → T and R → E be considered independant
and T’s version of the string taken as reference. The previous scenario is then
equivalent to T having sent the string and R and E having received it with
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Figure 2: Equivalent scenario

independant noise patterns respectively characterized by p′
R

= pT and p′
E

=
pE + pT − 2pEpT (see Figure 2).
Hence p′

R
< p′

E
even if pE < pT at the outset.

Let
h : x 7→ −

∑

x∈X

x log
2
x

denote the Shannon bit entropy function for some random variable x on a set X .
A string received with probability x ∈ X provides I(x) = 1 − h(x) information
bit. Let IR = I(p′

R
) (resp. IE = I(p′

E
)) be the information rate learnt by R

(resp. by E). Since h is strictly decreasing on [0, 1/2], we get IE < IR in terms
of Shannon information.
Under these conditions, R and T always have an advantage over E, a fact
already known to Wyner in [9].
Note that the advantage distillation phase is not necessary anymore whatever
low pE > 0 may be. Practically however, implementing the Bit Pair Iteration
Protocol in the first stage provides one with an effective way of increasing both
the reliability of R and T’s string as well as the eavesdropper’s disadvantage
IR − IE .

3 A low cost reconciliation protocol

Some errors in R’s string may remain. During the information reconciliation
phase, R and T exchange some information to correct these errors. Cascade,
introduced in [2], is built so that R and T efficiently correct their errors while
maintaining the information leaked to E relatively low (see [2] for a detailed
description of Cascade). Cascade’s performance is actually very close to the

3



Shannon bound in terms of amount of leaked information. However, Cascade
would be too complex to fit into simple low cost tags.
Practically, when the error rate is sufficiently low – which can be easily achieved
by performing enough Bit Pair Iteration protocol passes – most errors are cor-
rected during the first pass of Cascade. From this observation, we propose
introducing two major changes in Cascade.

• First, the same block size is set for every pass. The block size should also
divide the string size, so that only fixed length blocks have to be analyzed.

• Second, a permutation σ is set once and for all and cabled inside the
tag. It is hence straightforward to apply it to the string. On the contrary,
choosing the permutation at random and sending it through the communi-
cation channel at the beginning of each pass as required in Cascade would
have been infeasible in low cost tags.

Much less efficient than Cascade but also much easier to implement, our protocol
still converges in the stated context.

The proposed reconciliation protocol

Let

• n be the length of the strings to be reconciled,

• k be the block size with k|n,

• σ be a pre-cabled permutation in the set of all bijections of {0, . . . , n−1}.

The protocol is composed of several identical passes. Let x0 and y0 respectively
denote R and T’s string at the beginning of the protocol. The i-th pass of our
protocol is described as follows:

1. R and T respectively compute xi = σ(xi−1) and yi = σ(yi−1).

2. R and T divide xi and yi in n/k blocks.

3. For j from 1 to n/k,

(a) Let xi(j) and yi(j) denote the j-th block of R and T string re-
spectively. If the parity of xi(j) and yi(j) are the same, R and
T continue with the next block (or the next pass if all blocks in
the current pass have already been checked out). Otherwise, they
perform a dichotomic search which returns a position l such that
xi(j)[l] 6= yi(j)[l].

(b) R invert xi(j)[l] to correct the error.

Protocol analysis

Estimating the amount of leaked information during the reconciliation phase is
needed by the subsequent phases and achieved through the following proposi-
tion.
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Proposition 1. Let k be the block size, e(i) (resp. d(i)) be the bit error rate
(resp. the bit leak rate) after i passes of the reconciliation protocol. We have:

1.

∀i > 0 e(i) = e(i−1) −
1 −

(

1 − 2e(i−1)
)k

2k

where e(0) denotes the bit error rate at the beginning of the reconciliation
protocol

2.

∀i ≥ 0 d(i) =
i

k
+

(

e(0) − e(i)

)

dlog ke

Proof.

1. Let X be a random variable representing the number of errors in a given
block of size k when the string’s bit error probability is e. If the errors are
uniformely distributed at the beginning of the protocol and the permuta-
tion is chosen at random among all permutations of {0, . . . , n− 1}(or has
adequate properties, see the following section), it is legitimate to consider
that these errors remain uniformely distributed within the string at the
beginning of each pass. Thus, X can be approximated by a binomial law
with parameters (k, e). Let α1 be the probability that X is odd, we have

α1(k, e) =

dk/2e
∑

l=1

(

k

2l − 1

)

e2l−1(1 − e)k−2l+1 =
1 − (1 − 2e)k

2
.

Since one error per odd parity block is corrected, we have

∀i > 0 e(i) = e(i−1) −
α1

(

k, e(i−1)
)

k
.

2. Let us consider the j-th pass of the protocol with j ∈ {1, . . . , i}. For each
block, at least one bit is revealed for parity testing. If the block’s parity
is odd, then dlog ke more bits are revealed to locate the error. Thus, the
bit leak rate during the j-th pass is given by

1

k

(

1 + α1(k, e(j−1))dlog ke
)

.

Hence,

∀i > 0 d(i) =

i
∑

j=1

1

k

(

1 + α1(k, e(j−1))dlog ke
)

=
i

k
+

(

e(0) − e(i)

)

dlog ke .

The formula also holds for i = 0 corresponding to the trivial case d(0) = 0.

Smaller k obviously lead to cheapest hardware implementation of the protocol
and faster bit error rate decrease (see Figure 3). However, the parameter k
cannot be chosen too small because it also leads to higher bit leak rates (see
Figure 4). This analysis shows that there is a trade-off between error correction
rate and leaked information rate according to the initial bit error rate and
available gate count.
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Choice of a permutation

The estimate of remaining errors pass after pass is based on the hypothesis that
the permutation is chosen at random. However, the choice of a permutation
with adequate properties proves sufficient practically.
An adequate permutation for our reconciliation protocol should map distinct
positions in a given block to distinct blocks. This would guarantee the compo-
sition of the blocks be very different from pass to pass.
The rest of the section formally describes a quality measure for such a candidate
permutation.
Let Xj, j∈{1,...,n/k} denote the set containing the positions in the j-th block:

Xj = {x | (j − 1)k ≤ x < jk}

Let Mj(σ) denote the cardinality of the set of all elements X ∈ P(Xj, l) satis-
fying

∀x, y ∈ X, x 6= y =⇒ (∀j′ ∈ {1, . . . , n/k}, σ(x) ∈ Xj′ =⇒ σ(y) /∈ Xj′)

where P(Ω, λ) denote the set of all subsets of Ω of size λ.
Eventually, an adequate measure M according to the stated reconciliation prob-
lem for a permutation σ might be defined as

M(σ) =

n/k
∑

j=1

Mj(σ)

Suppose l ≤ n/k. An ideal permutation σ∗ according to M and l is such that

M(σ∗) =
n

k

(

k

l

)

The most accurate M is reached with l = min(k, n/k).

4 Towards privacy amplification

At the end of the reconciliation protocol, R and T agreed on a string with very
high probability. In this last phase, they publicly pick a compression function
G which, applied to this partially secret string, allows them to derive a shorter
– but almost perfectly secure – key K. Thereby, K can be chosen has a secret
key during the subsequent exchanges in, for example, the so-called one-time pad
encryption scheme.
The compression function is actually chosen from a universal class of hash func-
tions we introduce in the following definition.

Definition (Universal class of functions). A class F of functions from A to
B is universal if, for all pairs (x1, x2) of distinct elements in A, the probability
that the event f(x1) = f(x2) occurs is at most 1/|B| when f is chosen randomly
uniformely in F .

Some universal class of functions are quite easy to implement. Actually, in [10]
such a class is exhibited wich requires less than 460 logic gates.
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Discussion on the achievable key length

The following theorems allow us to derive the length of K.

Theorem 1 (Bennett, Brassard, Crépeau, Maurer [1]). Let X be a random vari-
able with values in the set X , and G be another random variable corresponding
to the choice of an element in a universal class of hash functions X → {0, 1}r

according to a uniform distribution. Then,

H(G(X)|G) ≥ HC(G(X)|G) ≥ r − log
(

1 + 2r−HC(X)

)

≥ r −
2r−HC(X)

ln 2
.

Theorem 2 (Cachin, Maurer [3]). Let X and U be random variables with
alphabets X and U respectively, and let s > 0 be an arbitrary security parameter.
With probability at least 1 − 2−s, U takes on a value u for which

HC(X) − HC(X |U = u) ≤ 2 log |U| + 2s .

Proposition 2 (Achievable secret key length).
Let

• n be the length of the strings at the beginning of the reconciliation phase,

• p be T and E’s relative bit error rate,

• D be the number of bits revealed during the reconciliation,

• s et s′ be two security parameters.

Then the final secret string length is nhC(p)− 2D− 2s− s′ about which E only
learns 2−s

′

/ ln(2) information bits with probability at least 1 − 2−s. hC(x) =
−log(x2 + (1 − x2)) here denotes the bit collision entropy.

Proof. See [3].

5 Summary

The hardware implementation of these protocols is easily scalable. It can be
optimized to reach a compromise with communication efficiency and gate count.
Suppose that R broadcasts a m-bit string that is received by T and E with a
bit error rate respectively pT and pE.
After this initialization phase, considering T owns the reference version, R

and E’s version are the image of T’s string received through a binary sym-
metric channel with a bit error rate respectively p′

R
= pT and p′

E
= pE +

pT − 2 pE pT > p′
R
.

Although E’s bit error rate is higher than R’s, several passes of the Bit Pair
Iteration protocol are performed. In so doing, the advantage is increased while
R’s bit errors compared to T’s are decreased so that less information bits are
needed during the reconciliation phase. The Bit Pair Iteration Protocol leads
to a reduction rate (see [4] for the details) thus we get a new shorter string of
length n.
With regard to T, R’s bit error probability is e(0) while E’s is p. E’s collision
entropy at this time is hence estimated at hC(p).
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As regards the reconciliation phase, our reconciliation protocol is implemented
with an ad-hoc block length. N passes of our protocol are performed where N
is chosen such that R and T’s shared errors evaluates to ne(N) � 1 while the
number of revealed bits D = nd(N) is not too high. Both e(N) and d(N) are
computed using the proposition 1. R and T share a partially secret string of
length n.
In a last phase, R and T apply a universal hash function to this partially secret
string. An advisable choice is the universal class of hash functions proposed in
[10] especially well suited for our context. The security parameter being set to
s and s′, nhC(p) − 2D − 2s − s′ highly secret information bits can actually be
distilled from the n only partially secure bits. More precisely, with probability
at least 1− 2−s which can be very close to 1 provided s is big enough, E learns
at most 2−s

′

/ ln(2) bit about this highly secret string.

6 Conclusion

We here show how to exploit the noisy environment of RFID tags to circumvent
low-end eavesdroppers. Our solution requires some bandwith and few gates.
Moreover, no key management is needed. Though not tested against physical
experimentation, the feasibility of our scenario is very likely provided low signal
to noise ratio during the initialization phase. The decorrelated part of the noise
should also be sufficient for the independance condition to practically hold.
Eventually, our approach seems pragmatic for this difficult problem.
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[6] A. Rényi, On measures of entropy and information, Proceedings of 4th
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
1961, pp. 547–561.

[7] Claude E. Shannon, Communication theory of secrecy systems, Bell Sys.
Tech. Journal 28 (1949), 656–715.

[8] Stephen August Weis, Security and privacy in radio-frequency identification
devices, Master’s thesis, Massachusetts Institute of Technology, May 2003,
pp. 51–55.

[9] A.D. Wyner, The wire-tap channel, Bell System Technical Journal 54

(1975), 1355–1387.

[10] Kaan Yüksel, Universal hashing for ultra-low-power cryptographic hardware
applications, Master’s thesis, Worcester Polytechnic Institute, 4 2004.

[11] Security and privacy in RFID systems, 2003–2005, Web-based bibliography
referenced at http://lasecwww.epfl.ch/~gavoine/rfid/.

10



���������
	������������������������������������ "!#�%$&���' ()�+*,���-$
. �0/%�- 1/32�4��4���2��156$&�-�879�0$:�;�
�=< �0���,�>���-/

?,@BADCFEHGJI&KMLNCFO�P+A-@BQHRTSUP+VH@MGXWZY[@BQ�\]@^L[LNQHP+A

_a`>bdcfeMgXhiajMkmlonZgXpqksrutwv>xzy
n;{X|fjfv>}mv~h>t
�Jn��f`+gqrXb0n�j�r&v+x3�%v~b0�MeMrXnZg���jfh>k�jMn�nZgXkmjfh��a�

�a�u�^���o�+��_J`>bdcfeBgXhM�M�anZgXb�`+j^t
���F�>�>���B�
���^�o�;�>�f ~�z¡£¢B�o�o�+¤� ~�B¥+¦o§>�B¨+©B�~�~ª~����«���¬� 

�®z¯�°�±�²F³>°~´0µ }mrXnDgXjF`+rXkmlonpqn;{ZeBgXksrut#pqv>}�eBrXkmv~jfp-`�gXn�{Zv>jfpqk�¶MnDgXn;¶·kmj·pX{Zkmn�jF{Dn�`>jf¶
kmjF¶Befp¸rqgqt���b0v+rXk�l>`+rXn�¶c�tJrX|Mn¹p¸rqgXv~jMhºgXn�p¸rqgXk�{DrXkmv~jMp»`>pzrX|fnZt`�gXn¹v>xNrXn�j��BgXn�pqn�j�r�kmj
n�bdcUn;¶f¶Bn;¶�pqn�{ZeMgXksrut�pX{Zn�jf`+gXkmv~p&¼wn�pq�Un;{DkN`+}m}mt�k�j�`�½a¾¿���ÀpqnZrqrXkmjfhBÁfÂTn�k�j^lonZp¸rXkm�
h~`+rXn�`-}mv�Ã]|F`+g�¶^Ã&`�gXnZ��{Zv~b0�M}�nDÄMksr�t�{DgqtB�MrXv>p¸tMp¸rXnZb�x[v>g:}mkmh~|�ruÃ%n�kmh~|�r&p¸tBb0b0nZrqgXk�{
Å nDtÆnZÄM{�|f`>jfh>n#`>jf¶Çp¸rqgXn�`>b�{Zkm�f|MnZg�cF`+pqn;¶Èv>jÉyHgXn�nËÊz`+gXksrutÈÌ�`>{�|Mkmjfn�p�Á%y¹|fn
pq�Un�n�¶�v+xÍ` Å nZt�nZÄM{X|F`+jfh~n:kmp¹cf`>pqk�{�`>}m}st0v>jf}st0}mkmb0kmrXn�¶�c^tdrX|fn�{X|F`>jMjfn�}f{�`>�f`~{Zksr�t
`+p3kmp3rX|Mn&p¸rqgXn;`>b�{Zkm�M|fnZg»rX|MgXv>efh~|M�feBr;Á~y¹|Mkmp3Ã¹v+g Å pqkmh>jfksÎU{�`+j�rX}mt�kmb0�MgXv�lon�p»`>jf¶
nZÄ^rXn�jf¶Mp��BgXn�l^kmv~efpq}stÇ�feMcf}mkmpq|fn;¶,gXn�pqeM}mrXp0v>j]y&Ê3Ì�½ µ p�Á µ ho`+kmjÍ�%{�|f`+g�`~{�rXnZgXkmp¸�
rXk�{Zp&v+x¿p¸r�`>jf¶f`�g�¶B��{Zn�}m} µJÏ �q�É¶Bn�pqkmh~j�gXn;`>}mkmÐ;`�rXk�v>jfp�`>p&�uÊ���{Zv+gXnakmj��BÑm�;Ò+ÓÔ�u�&Ì#Õ Ï
rXn;{X|fjMv~}mv~h+t�`�gXn�n�l>`>}meF`�rXn;¶HÁ
Ö�×^ØHÙdÚ ±>Û
¯~Ü ��b�cUn�¶f¶Mn�¶ Ï n;{ZeMgXksr�t��oÝHk�h>|�ruÃ¹nZk�h>|�r Ï tMb0b0nDrqgXkN{»Þ�nZtd��ÄM{X|F`+jfh~n>�
ÝHk�h>|�ruÃ¹nZk�h>|�r Ï rqgXn;`>bß�%km�M|fnZg;�fyÍgXn�n-Êz`�gXkmr�t#Ì�`>{�|Mkmjfn

à á9âzãåäTæ-çHèé&ê-ë:â:ì�íaîFïHâ�é&ð ñÉòXó�è-â�ïÍôõé&êöø÷úù�ûMü

ýJþÔP�Y[QFÿBP~GXWZY��f@�WDY[KBQ6K���@BL�WZP+AZQH@�WZYNÿMP�GDP��+EÔADYNW��	�ÔAZYNO�YNWDY[ÿBP>G�@BQHRõWZP���þÔQÔKMLNK
�BY[P>G�Y[G�G�WDY[OwE��
L[@^WDP>R V� WZþÔPÇG�WDAZKBQ��]AZP>G�WDAZY���WDY[KBQHG��HADP~G�P>QMWËY[QÀADP~G�KMEÔA���P��¸L[YNO�YNWDP>R RUP>ÿfY���P~G����qQÀGDP+QÍG�KMA
QÔP�W��aKBAZCUG������������qG �UG�WDP+O#G�KBA"!-P>@BA#�%Y[P+L R%$ºKBO�OwEHQÔY��>@�WZYNKMQ'&(!��)$+*��3WDþÔPTRUP+ÿFY���P~GwY[Q
EHG�P,&�@BG�QÔKURUP>G�K-�a@�QÔP�W��aKBAZC.*/�>@^QÇY[O��ÍKfG�P#GDP+ÿMP+AZP�GDY�0>P�L[YNO�YNWZ@^WDY[KBQHG0@BQHR1�
K2�ºP>A3��KBQ��
G�EÔO��UWZYNKMQ4��KMQHG�WDA�@^Y[QMW�G��
ýJþÔP�@oÿ�@BYNL @^VÔL[PwGDY�0>P3� KBA�@BRHRUY�WZYNKMQH@^L5��A6��UWDK
�BA�@��ÔþÔY���þH@BAZR��J@^AZP��KBO��
KBQÔP>QfWZGdY[GdK�� WZP+QÇL[Y[O�YNWDP~RÆY���QÔKBW�@oÿ�@^Y[L[@BVÔL[Pw@�W�@^L[L87�9-�;:��=<2>?�
ýJþHP"�/�5�����uY[QHRUEÍGXWZA@�
G�þÔKMEÔL R·þH@oÿMP�@"�H@BA�WZY��+EÔL @^AJYNQfWZP+AZP>G�WJY[Q,G�PA��EÔAZYNW��-�FVÍPA�+@BEHG�P�WZþÔPB��KMO�O�P>A6�+Y[@BLC�HADKfG �
P+AZY�W��
K��JWDþÔP>YNA#�ÔAZKFRÔE.�;W�G�Y GwRUY[ADPA�;WZL��ÉLNY[QÔCMP>RÈWDK,WZþÔP�GDP��+ADPA���ÈK��-RÔ@�W�@�ÿFY[@1�+EHG�WDKBO�P>Aw@-����P����
WZ@^QD��PE7 :��CF�>G��ý3K·K
�UWDY[O�Y�0>P�@H��KfGXW@�G�
P+A@� KBAZO#@^Q.�+P��¸AZ@^WDY[K#ADP��M@^A�RUY[Q��I��þÔY����q@^AZP>@.�D��þH@BQÔQÔP+L
VH@^QHR���Y[RFWZþJ�=�ÍK2�aP+AK��KMQHG�EHO"�ÔWDY[KBQÈ@BQHR1�+KFRÔP��qG�Y�0+P#��Y�WZþÇAZP>G@�ÍPA�;WWZKT@I�BY[ÿBP>Q,�ÔL[@^W � KMADO&�?�Y���AZK���KBQfWZADKMLNL[P+AA���5L8MONB��N�S�@$+*aAZP��ÔAZP>GDP+QfWZGJ@���þH@BLNL[P+Q��MPdY[QE�BP>QÔP+A�@^LP7 QA>?�

SFP��+EÔADP�CMP��·P�R���þH@^Q��MPdY G/�+KBQHGDY[RÔP+AZP>R�O�KfGXW��+ADYNWDY��+@BL»@^QÍRS�+KBO��ÔL[P�RTYNQTWDþHY[G/�+KBQfWDP�RFW
@^QHR·K��»O#@2TXKMA�Y[O��ÍKMA�W�@^Q.�+PU��YNWDþ�ADP��M@^A�R�WDK�GDP���EHADYNW��-����P��M@^A�RUY[Q��w@-���ÔL[Y��>@�WDY[KBQÍG�Y[Q·P>O#�
VÍP~RÔRUP>RÉG@�FG�WDP>O#G��z@BG@�FO�O�P+WDAZY��S&V�HEÔVÔL[Y����uCMP��.*+�MADKME����¸VH@BGDP>R,�+A@��UWZKMG@�UGXWZP+O#GVÍ@BGDP>RÆKMQW:L[LNY��UWDY��/$ºEÔAZÿBP/$ºA@��UWZK-�BA�@��HþX��&(WY$+$+*��oWZþÔPY�BP+QHP+A�@^L[Y�0~@�WDY[KBQ�WZK3Z/��ÍP>A �[W:L[L[Y��UWZY��+$ºEÔAZÿBP~G&£GDP+P:P
� �D�
7 \2>(*z@^QÍR�þH@^A�R��J@^AZP��qG �
P��+Y^]D�%P�RfWZP+QHGDY[KBQHGJ� KBA»P�_`��Y[P+QfW%@BADYNWDþÔO�P+WDY��/7 aA>F@BADP�G�WZ@^WDP��
K��b�uWDþÔP��¸@BA�WA�»\úYNWDþÔKMEUW�@ÇADP~RUE.��WDY[KBQõK���WZþÔP�G�PA��EÔAZY�W��
��WZþÔP>GDP·AZP��ÔAZP>GDP+QfW�@�WDY[KBQÍG�@^L[LNK2� WZK
ADP~RUE.��PWDþÔP�GDY�0>PK��zWZþÔP�QfEHOwV
P+A�G:WZK#�+@BL��+EÔL @�WDP���Y�WZþJ�Xc:P�W��FO�KBAZPU�+KBO��ÔL[P�R#P�R��ÔAZP>GZGDYNKMQHG



QÔP+P~RÀWDK V
P4�>@^L���EÔL @�WZP>R;�8N-L G�KD�:WDþHPÇAZYNQ��-�uVÍ@BGDP>RÀ@BG@�FO�O�P+WDAZY��,�+A@��UWZKMG@�FG�WDP>Od!dý+�Ye7 f.��g2>��>@^L���EÔL @�WZP>GaKBQ�A�@�WDþHP+A�G�O#@BLNLzQFEÔO�VÍP>AZG��N����+KBA�RUY[Q��ÉWDKhL&@B@BA17 Qi>dY[O"�HLNP>O�P>QfWZ@�WZYNKMQHG#K-�OWY$+$)KMQj9�\2�¸VÔYNW#O�Y���AZK-�HADK���P~GDGDKBA�G&(��L[K���CX�k� AZP�lfEÔP>Q.���SmnQ-oqp,r�s�*¹@BADP+� P~@BGDYNVHLNP
�
��þÔY[L[PU�S�N9@^QHRI�Y�_#P��[Z-P+L[L[O�@BQ·@^AZPG�WDY[LNL
þH@^A�R;�JtdQÇ@^Q4f��uVHY�W�O�Y��+ADK
�ÔADK��+P>GZG�KMAB&(��L[K���CX�k� AZP�lfEÔP>Q.���umv9AoIp,rUs*�KBQÔL��,G �FO�O�P�WDAZY��
@^L��BKBAZYNWDþÔO#GË@BADP4�+KBQHGDY RUP+AZP>Rú@-���ÔL[Y��>@^VÔL[P1�BY[ÿBP>QúLNK2� RÔ@^WZ@õA�@�WZP>G��wNdG �FO�O�P�WDAZY��Ç@^L��BK-�
ADYNWDþÔO#G&þHP+AZP�ADPAlMEHYNAZP�@^Q�@BRÔRUYNWDY[KBQÍ@^L.�+A@��UW@�?�+K-�ÔAZK���P>GZGDKBAA��NG�W8$+$ ADPAlMEHYNAZP>G¹O�KBAZPaWDþH@BQ9�o-o
o-oq�M@�WZP>GJ@^QÍRH�KWºS�@^L[KBQÔP0@BLNAZP>@MR��ËRUP+O#@BQHRÔG�@q� P��x9�o-o
oB�f@�WDP~G��FKMQÔL��·LNY��BþfW��aP+Y��BþfW
GXWZADP~@^Oy�+Y��HþÔP+A�G�@^AZP`��KMQHGDY[RUP>ADP~RÈ@-���ÔL[Y��>@^VÔL[P�� KBA�WDþÔPËP�RFWDAZP+O�PI�+@MG�P�K-��@BQz�/�5���/�uWZ@-���Y�WZþ�@BADKMEÔQHR49�o-o
oB�f@�WDP~GJ@^QHR�QÔK�O�Y��+ADK
�ÔADK��+P>GZG�KMAº@oÿ�@^Y[L[@BVÔL[P"&k�{���J7 Qi>(*��ÍS�FO�O�P�WZADY���@^L���BKBAZYNWDþÔO#GK� KBA�WDþÔY GB��L @BGZG0@^AZP#G�KME��BþfW�@^QÍRÉG�WDAZP>@BO|��Y��ÔþÔP>AZGw@^AZP�@-�M@BYNQ	��KMQHG�Y RUP>ADP~R1� KMA
G�E.��þ�QÔY���þÔP@-���ÔL[Y��>@�WZYNKMQHG+7^9Aoi>?�fSfWZADP~@^Ov�+Y��HþÔP+A�G:@^AZP�AZP��M@BAZRÔP>R"��KBO��
P�WZY�WZYNÿMP+��Y�WZþËVÔL[K��C��Y��ÔþÔP+A�G)��þÔP>Q�@�GDO#@^L[L� KfKBW@�ÔAZY[QMW:Y[Q�þH@^A�R��J@^AZP�Y[O��ÔLNP>O�P+QfWZ@^WDY[KBQHG¹Y G&AZP�lfEÔY[ADP~R;�^ýJþÔKBE.�Bþ
WDþÔPJG�PA��EÔAZYNW���@MG �
P���WZG%K��C�/�5����þÍ@oÿBP�QHK^W¹VÍP>P+Q�G�WZ@BQHRÔ@BAZRUY�0+P~R�GDK/�£@^AA�~WDþÔPaEHGDPºK-�ÍG�WDAZP>@^O��Y��ÔþÔP+A�GËþHP+AZPÈGDP+P+O#G`� KBA�G�P>P>@^VHLNPÇRÔEÔPÆWZK WDþHP4�ÔAZP>GDP+QfWH�+KBQHG�WDA�@^Y[QfWZG��w!-P�RFW·WDK�þÔY��BþÔP>A
VH@^QHR���Y[RFWZþJ�FG�PA��KBQÍR��BP+QHP+A�@�WDY[KBQ}�/�5����WZ@-�MG:@BADP/�HL[@BQÔQÔP>R�WZKwþH@oÿMP�YNO��ÔAZK�ÿBP~R�G�PA��EÔAZY�W��& P+QD��A6�X�ÔWDY[KBQJ�
�H@BGZG �aKBA�Rq� EÔQ.�;WZYNKMQHG��M@^EÔWDþÔP>QMWZY��>@�WZYNKMQC*¹@^QÍR�AZP>@MRD~i��AZYNWDP+�+@-�H@^VÔY[L[Y�W��
�
��P��
P�R���þH@^Q.�BPJADPAlfEÔYNAZP>G%AZP>@MRD~i��AZY�WZP+�/�5��� RUP+ÿFY���P~G)� KBA:VHY[RUY[AZP��;WZYNKMQH@^L��+KBO�OwEHQÔY��>@�WZYNKMQ�@BQHR]HAZG�WJWZ@-�MGY��YNWDþ,��þH@^L[L[P+Q��MP�@BQHR�ADP~G �
KBQHGDP0@^EUWZþÔP+QfWZY��>@�WDY[KBQ�@^AZP�RUP+ÿMP+L[K-�
P>R	7^9
9��;9A:i>G�N+� WDP>Aa@BLNLG�F@0CBP���P�R���þH@^Q��MP-GXWZYNL[L¿ADP>O#@^Y[QHG:K-�J�ÔADKMþÔY[VÔY�WZYNÿMP���KfGXWJ@^QHR�KMQÔL���G�WDAZP>@BOx�+Y^��ÔþÔP+A�GaG�P>P+O�WDK�VÍP�@��.�ÔLNY��+@BVÔL[P�� KMAºP>Q.��A6��UWDY[KBQËY[Q�G�WDAZKBQ.�BL���AZP>G�WDAZY���WDP~RËRUKBO#@BYNQHG��ÔSFP+P>CX�
YNQ��]@^QÍR Y[QfÿMP>G�WDY��M@^WDY[Q��Ç@^LNWDP>ADQÍ@�WDY[ÿBPT@����HADKf@-��þÔP~G�V
P��BKMQHR P�_`��Y[P+QfW�Y[O��ÔL[P+O�P+QfWZ@^WDY[KBQHG
K��dP~GXW�@^VÔL[Y G�þÔP~Rh�ÔAZY[O�YNWDY[ÿBP~G�WDþFEHG�AZP+O#@^Y[QHG�@	��þH@^L[LNP>Q��BPI� KBA#AZP>GDP>@BA6��þJ���qQ%�HAZ@
�;WDY���P
�&@
QÔP��+P>GZGD@BA@�ÇWDA�@BRUP>K��6V
P�W��aP+P>QõWDþÔP·LNP>ÿBP+LºK��-GDP���EHADYNW��É@BQHRÉWDþHP�@oÿ�@^Y[L[@BVÔL[P#ADP~G�KMEÔA6�+P>G�KMA��KBO��ÔEÔWZ@�WZYNKMQ·WZYNO�P0K-� WDP+Q�þH@MGaWDK#V
PO�£@-�+P>R;�

\ÈPÉG�E��
�BP~GXW#WZK6RUY G@�+EHGDG�@ þH@BAZR��a@BADP,GDKBL[EUWDY[KBQ�� KMA·L[Y��MþMW��aP+Y��BþfW·G@�FO�O�P+WDAZY��ÇCBP��
P�R���þH@^Q.�BP�@^QHRÉGXWZADP~@^O|�+Y��HþÔP+A0VH@MG�P~RÇKMQÉGDK��[�+@BLNL[P>R����6�6�"�+�2�{�V�k�,�4�-���
�b�=�{�}7�9�<i>?��\ÉP�ÔADP~G�P>QfW@�� EÔL[L��,GDP+AZY[@BL»@^A���þÔYNWDP���WDEÔAZP��¸ÿ�@^AZY[@BQfWaVH@MG�P~R�KBQh7�9�F2>%EHGDYNQ��ËWDþÔY G-CMP��·P�R���þH@^Q��MP��KBQD��P��ÔW·@^QHRÀ@ÉWDA�@2TXPA�;WZKBA6� O�KFRÔP-�:WZþH@�W·@BLNL[K2��� KBA��£@BG�W�GDE.���+P>GZG�Y[ÿBP�CMP��h�MP+QÔP>AZ@^WDY[KBQ
@^QHR�P�R���þH@BQ��BP
�F@MGY�ºP>LNL�@MG8� KBA-@�G@�fQD��þÔADKMQÔKBEÍGºG�WDAZP>@BO���þÔY��ÔþÔP+AA���¸W�P+QH@BVÔL[P>G�GDþÔKBADW�CBP��
LNY�� P�WZYNO�P>GWDþHADKME��BþTWDþHPw@-��þÔY[P+ÿ�@BVÔLNP�G@�
P+P>RÆK��:@�CBP���P�R���þÍ@^Q��MP�@BQHR,��KMQHGDP�lfEÔP+QfWZL��I�£@BG�W
ADP~G �FQ.��þÔAZKBQHY[GZ@�WZYNKMQB� KBA:WDþÔPG�WDAZP>@BO���Y��ÔþÔP>A��M\ÈPY� K��+EHG:KMQ�@�L[K2� þH@^A�R��J@^AZP��[��KBO��ÔL[P�RUYNW����L�� $ºKBAZP¹GDKBL[EUWZYNKMQU� KMA�AZP>GDKBEÔA���P��uL[YNO�YNWDP~RdRUP>ÿFY��+P>G����ÔP~@BGDYNVHLNP)� AZP�lfEÔP>QMW�AZP+CMP��FY[Q���@^QHR�ÿ�@^AZY��
@^VÔL[PCMP���LNP>Q��^WZþHGº@BLNL[K2�%� KBAw�HP�RUY[VÔLNP�G�PA��EÔAZYNW���L[P+ÿMP+L G:P>G@�
P���Y @^L[L���Y[QËP>QfÿFY[ADKMQÔO�P+QfWZGP��Y�WZþ
O�KURUP>AZ@^WDP0GDP���EHADYNW��I��KMQ.��P>ADQÍG��
� á9âzãåäTæ-çHèé&ê-ë:â��aã���ïÔâ�â���é%ïÍòqî^ã���é&çÍèò�êâ»ô

ýJþÔPI�£@MGXW�G �FQ.��þHADKMQÔY�0~@�WZYNKMQõK���W��aKÇY[QMWZP+A�@-��WDY[Q��ÇY RUP+QfWZY��>@^L[L��õG�WDAZE.�;WZEÔADP~R ý3ADP>PHL&@^AZYNW��
?,@-��þÔY[QÔP~GB&£ý+La?,G�*JY[G��ÔADK
�ÍKfG�P~RTVX�E��Y[Q�0+P>L»@^QHR,�0@BQfWDP+A#7^9A<i>%@MG-@#O�P�WZþÔKURS� KBAdG@�FO"�
O�P+WDAZY��aCMP���P�R���þÍ@^Q��MP-�A�¸W�RUKFP>G¹QÔKBW¹Y[QFÿBKMLNÿMP�L @^A6�BPaQfEHOwV
P+A�G&@^QHR#�ÔAZYNQ.�+Y��HLNP~G�� AZKBOßQfEHO#�
VÍP>A�WDþHP+KBA6�È@BQHR]Y G�AZP+L @�WDP~RÉWDKÆGDP��+ADP+WwCBP��È@��MADP>P+O�P+QfW�VH@MG�P~RÉKBQõY[QMWZP+A�@-��WDY[KBQ]K�ÿBP>A�@�ÔEÔVÔL[Y��dY[QHG�PA��EÔAZP���þH@BQÔQÔP>L
@MG�YNWºY GºRÔY[G6��EHGZGDP>R#EÔQÍRUP+AaYNQ�� KBAZO�@^WDY[KBQ#WZþÔP+KMADP+WDY��-@BG@�
P��;W�G�V�
?,@^EÔAZP+A&@BQHR�K^WDþHP+A�G+7^9iQ��9�\��.9iaX��9Afi>?�BýJþÔPJP�R���þH@BQ��BPY�ÔAZK^WZK�+KBLFY G¹ADP~@^L[Y�0>P>R�VX��@^Q�YNQfWZP+A@�
@-�;WZYNÿMP�@MRÔ@��ÔWZ@�WZYNKMQ�&£P+AZADKMA �[��KMADAZP���WDY[KBQC*��ÔAZK���P~GDGaV
P�W��aP+P+Q�WDþHPdW��aK�YNQfWDP>AZ@
�;WZYNQ��"�H@BA�WZYNP~G� @^QÍR`�`�FýJþÔPý+La?�&£GDP+P��%Y��BEÔAZP�9>@
*���KMQHGDY[G�WZG�K��J� Y[QHRUP��
P+QÍRUP+QfW�G�EÔO�O#@�WZYNKMQËEÔQÔYNWZG



&�93m¡ `m��u*P��Y�WZþ�QHKBQ��¸K�ÿBP>ADL @����HYNQ��wYNQ��HEUWZGJY[QT@wWDAZP+P�G�WDAZE.�;WZEÔADP�@^QÍR·@�G�Y[Q��BL[PK�H@^AZY�W��
EÔQÔYNW3@�W�WZþÔP:KMEUW@�ÔEÔW���Wº@-��þ�G�EHO�O#@^WDY[KBQ�EÔQÔYNW3AZP��+P+Y[ÿBP>GzRÔY^�¿P+AZP+QfW�¢�Y[Q��ÔEUW�G�&�93m	£}m�¢�*��

x21 x2N xK1 KNxx1N11x

w1j
A/B w2j

A/B

OA/B

1
yA/B y

2
A/B y

K
A/B

σ Σ(    ) σ Σ(    ) σ Σ(    )

Π

Kj
A/Bw

¤ `2¥ x

TPM

x

O

TPM

O

A

B

A

B

¤ c�¥
¦P§�¨ ´2©F´ ¤ `i¥dy¹|fn�yÍgXn�n�Êz`�gXksrutÇÌ�`>{�|Mk�jMn~Á µ pqk�jMh~}mn�v>eMrX�feBr�kmp0{�`+}�{Zef}�`+rXn�¶ÆxNgXv~b rX|Mn��f`+gXksrut
v+xarX|Mn�v>eMrX�feBrXp�v+xºrX|Mn�pqefb0b�`�rXkmv~j,efjMksrXp�Á ¤ c�¥dÕaeBrX�feBrXpdv>jÉ{Zv>b0b0v~jM}mtTh~kmlon�jÆkmjf�MeMrXp�`+gXn
nDÄf{X|F`+jfh>n;¶�cUnZr�Ã¹n�nZj��F`�gqrXk�nZpwª�`>jf¶�« x[v>ga`~¶M`>�Mr�`�rXkmv~j�v+x¿rX|fn�ksg��MgXnZ}�kmb0kmjF`�gqt Å nZt�Á

LNP~@BRUY[Q���WDK�@^Q·Y[Q��ÔEÔW8]ÍP+L RËK��¹G�Y�0+PO�¬{¢z�UýJþÔP�ÿBPA�;WZKBA@�?�+KBO��ÍKMQÔP+QfW�G�@^AZP�AZ@BQHRUKBO�ÿ�@^AZY��
@^VÔL[P>G3��YNWDþz0>P+AZK�O�P~@^Qõ@^QÍRÈEHQÔY�W�ÿo@BADY @^QD��P-�3ýJþÔP#KBEUW6�ÔEUW"®3¯°[±5&(² *�³µ´X¶39-·�9-¸E& �K¹ �
RUP+QÔKBWDP~G¹P�lfEÔY[ÿo@BLNP>QfW¹K
�ÍP>AZ@^WDY[KBQHG�� KMA � @BQHR"�"*��-�BY[ÿBP+Q�VÍKMEÔQHRUP~R���KFP�_`��Y[P+QfW�G8&(�ºP>Y��MþfWZG{*º ¯X°�±»6¼ &k² *8³	7^¶/½�·@½�>J¾�¿&V� ADKMO Y[Q��ÔEÔW�EÔQHY�WB£ÇWDK]G�EÔO�O#@�WZYNKMQ EÔQÔYNW` .*0@BQHRÀ�+KBO�O�KBQ
AZ@BQHRUKBOøY[Q��ÔEUW�GKÁ »@¼ &k² *K³n´
¶39
·�9�¸X�HY GU�>@^L���EÔL @�WZP>RÇVX�,@I�H@^AZY�W��S� EÔQD�;WDY[KBQÉK���WDþÔP�G�Y��BQÍG
K��&G�EÔO�O#@�WZYNKMQHG�Â

Ã ¯°[± ¤bÄ ¥JÅdÆÇÈ�É=ÊiË ¯X°�±È ¤bÄ ¥;ÅÌÆÇÈ�É=ÊiÍ
Î,ÏÐÑ É=Ê-Ò ¯X°[±È Ñ ¤bÄ ¥�Ó È Ñ ¤bÄ ¥kÔ Ñ ¤ ��¥

Õ & ¬Ö*»RUP>QÔK^WZP>GzWZþÔPºGDY��BQ��G� EÔQ.��WDY[KBQJ�~ýJþÔP�GDK��[�+@^L[L[P>R`×{�V�XØ��-��Ù���ÚX�»ÿ�@BADY @^QfWw&k�{����7�9�<i>(*¿AZP>RÔE.��P~G
WDA�@^QHGDO�Y[GZG�Y[KBQÍG&K��zKBEÔW@�ÔEUW�G:V��@^Q#KBA�RUP>A:K��zO#@��MQÔY�WZEHRUPRÔK2��Q�WZKw@O� P��¡�H@-��C�@��MP>G���L&@^A@�
WDY[P>G � @^QHR��åG�WZ@BA�WO��Y�WZþÈ@BQÇY[QHRUY[ÿfY RUEH@BL¹AZ@BQHRUKBO�L��E�BP+QHP+A�@�WDP~RÆGDP���AZP�W�Y[QÔY�WZY[@BL¹ÿBP���WDKMAº ¯X°�±»6¼ &k²[Û�*{��ýJþÔP>GDPºY[QÔYNWDY @^L[L��0EHQ.��KMADAZP+L @�WZP>R�A�@^QHRUKMO ÿo@BADY @^VHLNP~G»V
P��+KBO�P8�+KBAZADP>L[@^WDP~R}& Y RUP+Q��
WDY��+@^LV*�K�ÿBP>A:WDY[O�P�WDþÔAZKBE��MþËWZþÔP�YNQ��ÍEÔP+Q.�+P�K���WZþÔP3��KBO�O�KBQ�YNQ.�ÔEUWZG�@BQHR#WZþÔP�YNQfWZP+A�@-�;WZYNÿMP
@BRÔ@-�UWZ@^WDY[KBQ @BGq� KBL[L[K2�-G��5N+� WDP>A�@ÈG�P+W�K-�UÜEÝÞ9`�ÔAZP>GDP+QfWDP~RõY[Q��ÔEUW�G��5��þÔP+AZPSÜ�RÔP+QÔKBWDP>G
WDþÔP,GDY�0>P�K-�WDþHPTVHY�W}�H@
��Co@-�BP
�»WZþÔP,��KBAZAZP>G@�ÍKMQHRUY[Q��uÜ·ý+Lº? KBEUW6�ÔEUWZG,&£VÔYNWZG{*#®3¯°[±5&(² *
@^AZP�P�R���þÍ@^Q��MP>RõK�ÿMP+A�WZþÔPE�ÔEÔVÔL[Y��S��þÍ@^QÔQÔP>LJYNQ KBQÔPS�H@
��Co@-�BPu&£GDP+PE�3Y��BEHADP�9+V=*��:ýJþÔP,Ü
G�PAlMEHP+Q.�+P>GdK���GDY��MQHGK-�:WDþHP�GDEÔO�O#@�WDY[KBQÇEÔQÔYNWZGKß ¯X°[±» &k² *U³%´X¶39-·�9�¸w@^AZP�G�WDKMADP~RE� KBAdWDþHP
G�EÔVÍG�PAlMEHP+QfW�@MRÔ@��ÔWZ@�WZYNKMQ1�ÔAZK���P>GZG��CN þÔP>VÔVÔY @^QÇL[P>@BADQHYNQ���ADEHLNP�@BRÔ@-�UWZGdWZþÔP"�+KFP�_`��Y[P+QfWZG& WDþHP`�ÔAZP+L[YNO�Y[QH@^A6�ÇCMP��.*���EÍG�Y[Q��,WZþÔPHÜ�KBEUW6�ÔEUW�Gw@^QÍRhÜ�GDP�lfEÔP>Q.��P~G0K���GDY��MQHG��3ýJþÔP��]@^AZP��þH@^Q��MP>R#KMQÔL��#KBQ·PAlfEH@^L
KBEUW6�ÔEUW�VÔYNWZG+®3¯�&(² *Pàµ®3±)&(² *º@�WJVÍKBWDþS�H@^ADWDY[P>G���ÔEÔADWDþÔP>ADO�KMADP
�
KBQÔL��n�+KFP�_`��Y[P+QfWZG·K���WDþHKMGDPÇG�EHO�O#@^WDY[KBQúEÔQÔYNWZG�@^AZP4��þH@BQ��BP~R;�&WDþÍ@�W�@-�BAZP+P,��YNWDþúWZþÔY[G
KBEUW6�ÔEUW�Â Ã ¯X°�± ¤bÄ ¥;Å Ë ¯X°[±È ¤bÄ ¥�á Ò ¯°[±È Ñ ¤bÄ ¥�á Å Ò ¯°[±È Ñ ¤bÄ=â ��¥�ã Ã ¯X°[± ¤bÄ ¥�Ó È Ñ ¤bÄ ¥�Ñ ¤ �i¥



$ºKFP�_}�+YNP>QfWZGw@BADPË@BL��J@i�UG�VÍKMEÔQHRÉWZKÆADP>O#@^Y[QõYNQ]WZþÔPËO#@2RUY[OwEÔO AZ@BQ��BP17�¶/½/·6½�>/¾ä¿
VX�,AZP��ÍP��;WZYNKMQÆKBQfWZKËWDþHP�V
KBEÔQÍRÔ@^A6��ÿo@BLNEHP>G��C�¸WZP+A�@�WZYNQ��·WDþÔP�@^V
K�ÿBPq�ÔADK��+P>RUEÔAZPwY[QÈ@MGd@BQ
YNQfWDP>AZ@
�;WZYNÿMP��ÔAZK^WZK�+KBLG�MP~@-��þS��KBO��
KBQÔP>QfWaK-�»WDþHPU�ÔAZP+L[Y[O�Y[QH@BA@�#CMP����ÍP>A � KMADO#GJ@�AZ@BQHRUKBO�a@BLNC,��YNWDþ]AZP��HPA�;WDY[Q���V
KBEÔQHRH@^AZYNP~G��zýJþÔP#AZP>GDEÔLNWDY[Q���CMP��ÇG@�H@
��P�Y[G�K-�aGDY�0>P,&k:�½4å'9i* æ�ç��
ýY�ºKE��KMADAZP>G@�ÍKMQHRUY[Q��I�+KBO��ÍKMQÔP+QfW�GdY[Q º ¯»6¼ &(² *d@^QÍR º ±»@¼ &k² *ADPA��P+Y[ÿBPwWDþÔP#GZ@^O�P�AZ@BQHRUKBO��KBO��
KBQÔP>QfWK��¹WDþHP#��KMO�O�KMQ�YNQ��HEUWdÿMP��;WZKBA/Á »@¼ &k² *��=N+� WDP>AP~@-��þ,V
KBEÔQHRÔYNQ��·K-�
P+A�@�WDY[KBQ��
WDþÔP�RUY GXW�@^Q.�+PdV
P�W��aP+P>Q#WDþÔP�W��aK#�+KBO��ÍKMQÔP+QfW�G�Y GºGDE.����P>GZGDYNÿMP+L���AZP>RÔE.��P~R�WDK"0+P>ADKD�B\úþÔP>Q
VÍKBWDþ,�H@BA�WZYNP~G�@BRÔ@-�UWDP~R·WZK}�ÔAZKFRÔE.��P�P>@
��þ�K^WDþHP+A�GJKBEUW6�ÔEUWZG��UWZþÔP��TADP>O#@^Y[QTG@�FQ.��þÔAZKBQÔKMEHG��Y�WZþÔKBEUW#� EÔADWDþÔP>A#��KMO�OwEÔQÔY��+@^WDY[KBQ'&�G�P>PIW�lfEH@^WDY[KBQ,:-*0@BQHRz��KMQMWZYNQFEÔPËWDK4�HADKURUE.�+P#WDþHP
GD@BO�PÇKBEUW6�ÔEUWZG·KBQúP>ÿBP+A6�%�+KBO�O�KBQÔL��À�MYNÿMP+QÀY[Q��ÔEUWA�+$ºKMO�O�KMQ'��KFP�_`��Y[P+QfW�G·@^AZP,QÔK2��ÔADP~G�P>QfWYNQÇVÍKBWDþÇý+La?,G-Y[QÆP>@
��þ,K��&WZþÔPB� KMLNL[K2��YNQ.�ËY�WZP+A�@�WZYNKMQHG��ÍýJþÔY[GU�ÔAZP+L[YNO�Y[QH@^A6�TCBP���+@^Q]V
PËEHGDP>RÉWZKÆRUP+AZYNÿMPË@,��KMO�O�KMQÈWZYNO�P��¸RUP��ÍP>QHRUP>QMW#]HQH@BL:CBP��ÇV�4�ÔAZY[ÿo@
���É@^O��ÔL[Y^]���+@�WZYNKMQu7�9AQ��J9�\i>�KMA/�+@BQ�V
P�EHG�P~R�RUYNAZP���WDL��-���HEÔA�WZþÔP+AZO�KBAZP-�UG@�fQD��þÔADKMQ�#Y[G�@
��þÔYNP>ÿBP~RËKBQHL��� KBA#��è2é"é}è2�ËY[Q��ÔEUW�G��
ýJþFEHG��HCBP+P��ÔY[Q���WDþÔP#��KBO�O�KBQ�Y[Q��ÔEUW�GGDP��+ADP+W-VÍP+W��ºP>P+Q � @^QÍR,��+@^Q�V
P�EHGDP>R�WDK#þÍ@oÿBP0@^Qz& P>QfWDYNW���*�@^EUWZþÔP+QfWDY��+@^WDP~R�CMP��ËP�R���þH@^Q��MP-�ÔýJþÔP>ADP�@BADPB:
æ�çE¶n9�ÍKfGDGDYNVHLNP�YNQ��HEUWZG�Y[QÇP~@-��þÆYNWDP>AZ@^WDY[KBQJ�C�FYNP>L[RUY[Q��T@BGdO�@BQ�,�ÍKfGDGDYNVHLNP�YNQÔYNWDY @^L[Y�0>@�WZYNKMQHG�� KBA�@�HG�P>EHRUK�A�@^QHRUKMO QFEÔOwV
P+A+�MP+QÔP>AZ@^WDKMA��
ê;ëkì íwî2ïXð�ñXò-ó�ôDîiõ�ö�ôJ÷�ñCø�ùJñò
ú�î2ûbó�õ¡ï.ü�÷¡ý"ó�ó�ï�òAþJÿN/�M@BYNQh�+KBQHGDY RUP+A0WZþH@�W#��þÔP+Q]WZþÔP#W��aK1�H@^ADWDY[P>Gw@^AZPËG �FQ.��þÔAZKBQHKBEHG�WZþÔP��]@^L G�K,þÍ@oÿBP�WDþHP
GD@BO�P�KBEÔW@�ÔEUW�G�YNQÉP>@
��þÆYNWDP+A�@�WZYNKMQJ��$ºKBO�OwEHQÔY��>@�WZYNKMQ��+@BQÆWZþfEÍG�VÍP#G�WDK-�.�ÍP~RÇ@^QÍRÇP~@-��þ�H@^ADW���WDþÔP>QõG�Y[O��ÔL��È@����ÔL[Y[P>G�WDþHP�@MRÔ@��ÔWZ@�WZYNKMQ%&kW�lfEH@�WZYNKMQ	:X*���Y�WZþÈYNWZG0K2��QÈKBEUW6�ÔEUW�Y[Q
KBA�RUP+AaWDK#þÍ@oÿBP0@�QÔP�RFW-CBP��}� AZKBO)WZþÔP�WDA�@2TXPA�;WDKMA@�#Y[Q�CBP��
�qG@�H@-�+P-��eGDYNQ.��WDþÔP����@���������Gè��{��1è��-��WZþÔY G#�J@i�õ@oÿBKMY[RÔG�WDþÔP�G�WZ@�WZP>R�G�PA��EÔAZY�W��	�aP>@BCfQHP>GZG�Y[Q 7�9�g2>?�)��þÔY���þ6@BGZG�EHO�P~G�@BQ
KBQ��MKBY[Q��+��KBO�O�EÔQÔY��+@�WZYNKMQJ��NdG»GDKfKMQ�@BG�@JQHP��]CBP��Y GJ�ÔAZP>GDP+QfW��+Y�W%Y[GzEÍG�P~RK� KBA»P>Q.��A6��UWDY[KBQ��W�@-��þõY[QfWDP��BP+A"��KMO"�
KBQHP+QfWwK���WZþÔP�WDþÔP�CBP��ÉY G�@-�M@^Y[Q��UtK��AZP>R	��YNWDþ6@BQ6@��.�ÔADK
�ÔAZY[@^WDP
LNP>Q��^WZþ���KMQ.�+@^WDP>QH@�WZYNKMQÆK��w½�YNQ.�ÔEUW0VÔYNWZGdWDKH� EÔADWDþÔP>A�RÔP���KMADAZP+L @�WZPwGDEÔVHGDP�lfEÔP+QfW�CBP��FG��C�¸W�+@^Q·WDþÔP>Q�VÍP�EHGDP>R·VÔLNK���CX�?��Y[GDPdKMAJVÍP�EHGDP>R·KBQ�@q�
P+A@�G�Í@-��CBP+WºVH@MG�Y G��FRÔP��
P+QHRUY[Q���KBQ�WDþHP��KBQD��AZP�WDPd@����ÔL[Y��+@�WZYNKMQJ���qQ·@BQ�"�>@BGDP-��WZþÔPCMP���Y[G�KBQÔL���EÍG�P~R�WDK�P>Q.��A6��UWa@B�+P+ADWZ@BYNQ#GDO�@BLNL
G�EÔVÍG�P+W-K��»WZþÔP3�ÔL @^Y[QfWDP�RFWA�HýJþÔY GJP>G@�ÍPA��Y @^L[L��·@BLNL[K2�-GaWDK�AZP>@BLNY�0+P0GDþÔKBADWaCMP��ËL[Y�� P�WDY[O�P>G���ÔKBAWDþÔP�CBP���P�R���þH@^Q��MPB�ÔAZK^WZK�+KBL����V�(�è	���%P+QfWDYNW��,@^EUWZþÔP+QfWDY��+@^WDY[KBQJ�
P>@oÿMP>GZRUAZK-���ÔY[Q��
@�W�W�@-��CUG�þH@oÿMPu�+KBQ.�+EÔADAZP+QfWZL�� V
P+P>Q��ÔADK
�ÍKfG�P~R�V�9SUþH@^O�Y[AÆP�WÇ@BLk�q7 :�o2>�@^QHR��0@^QfWZP+AA���YNQ�0>P+L:P+Ww@^LG��7 :�9���:
:��:-<i>G��
aEUW0WDþÔPI�ÔADP>ÿ�@^L[P+QfW�RUP�]HQHY�WZYNKMQõK���@TGDE.����P>GZG � EÔL�@�WDWZ@
��CÆY[G
þH@oÿFYNQ���@#g
fB�
P+A���P>QMW�@oÿBP>AZ@-�BP-K�ÿMP+AZL[@-�� º�� &k² *J¬ º ¯°[±)&(² *��C&£@oÿBP>AZ@-�BP~R�K�ÿBP+AJ@^L[LzG�EHO�O#@��
WDY[KBQTEÔQÔYNWZG{*w��Y�WZþ�WZþÔP3��KFP�_`�+YNP>QMW�GJK��%KBQÔPO�H@BA�W��
����þÔP+QS�H@^ADWDY[P>G � @BQHRH��@BADP�@^L[ADP~@BR��
G �FQ.��þÔAZKBQHKBEHGJ@^QÍRTWDþFEHG-GDE.���+P>GZG�� EHLNL��`]HQHY[GDþÔP>R�WZþÔP�CBP��·P�R���þÍ@^Q��MP�@BQHR�WDþÔPB�+KBO�OwEHQÔY^��+@�WZYNKMQJ�zýJþÔP#@^EUWZþÔKBA�GK��þÔKMGDPwWZþÔY G0RUP�]HQHY�WZYNKMQJ�zVÍPA�+@BEHG�P�K��ºWDþÔP#G�WDAZKBQ��I�HE.��WDEH@^WDY[KBQHG�Y[Q
WDþÔP#GDE.���+P>GZGU�HADKMVH@^VÔY[L[Y�W���EHGDYNQ.�T@TGXWZADY��;W�RUP�]HQÔYNWDY[KBQJ��ýJþHP�@^W�WZ@
��CUGdY[Q�7 :-o��J:�9���:
:��:�<i>�+@^QÆ@BLNL%V
PwO#@BRUP�@^AZVÔY�WZAZ@BADY[L��H��KfGXWZL���@^QÍRTWDþFEHGK�+@^Q,�HAZ@
�;WDY��+@BLNL��TVÍP�RUP�� P~@�WDP~R,V�TGDY[O#��ÔL��·YNQ.�+ADP~@BGDYNQ.��WDþHPK�Í@^A�@^O�P�WZP+AY½/�UýJþÔP0G�PA��EÔAZYNW���Y[Q.�+ADP~@BGDP>Gw�ÔADK
�ÍKMA�WZYNKMQH@^LÍWDK�½��K��þÔY[L[P
WDþÔP}�ÔAZKBVÍ@^VÔY[LNYNW��ÆK-�a@,GDE.���+P>GZG�� EÔL:@^W�W�@-��CÇRUPA��AZP>@MG�P~GdP�R��ÍKMQÔP+QfWDY @^L[L��1��Y�WZþz½�7 :�9�>G�»ýJþHP
@����ÔAZKM@
��þ·Y GJWDþFEHG-ADP��M@^A�RUP~RI��KMO��ÔEUWZ@^WDY[KBQH@BLNL���GDP��+EÔAZPK��YNWDþ�AZP>G@�ÍPA�;W�WZK�WDþÔP~G�P�@^W�WZ@
��CUG� KBA-GDE�_`��Y[P+QfWDL��·L @^A6�BPO½�7 :�F��D:�<2>G�

ýJþÔPËL @�WDP~GXW�@�W�W�@-��C=�J��þÔY���þ RUKFP>GwQÔK^W�G�P>P+O�WZKÆV
P�@2�¿P���WDP~R]VX�]@^QõY[Q.�+ADP~@BGDP�K-�/½& VÔEUW�GXWZYNL[L%VX��@^Q,Y[Q.�+ADP~@BGDP0K����u*JEHG�P~G@#þFEÔQÍRUADP~R,��KFKBA�RUY[QH@�WZP>R,@BQHR,��KMO�O�EÔQÔY��+@^WDY[Q��



ý+Lº?,GE7 :�<i>?��N GDE.����P>GZG � EÔL�@�W�W�@-��Cõ@-����KMAZRUY[Q��ÇWDKÈWDþÔP�RUP�]ÍQÔY�WZYNKMQ%�MYNÿMP+Q6@BVÍK�ÿMPH�+KBEÔL R
VÍPÆ@
��þÔYNP>ÿBP~RÀ��YNWDþú@u�ÔAZKBVH@BVÔYNL[YNW�� K��3o��ÖQ��:ýJþÔPÆGDE.����P>GZG"�ÔAZKBVH@BVÔYNL[YNW�� K��0@-��þÔY[P+ÿFY[Q��]@g-g��
P+A���P+QfW@oÿMP+A�@��BP�K�ÿBP>ADL @��TRUAZK-�HG�RUK2��QTWZKIo��Ö:-Q���Z-K2�aP+ÿBP>A��Ô@BQ,@�W�W�@-��CMP+AJþÔP+AZP�RUKFP>G
QÔK^W�CfQHK2� P>Y�WZþÔP+AA�5��þÔY���þ6K���WDþHPS� ¬-¢ ��KBO��
KBQÔP>QfWZG�K���WDþHPH��KFP�_}�+YNP>QfWZGS& WDþHP·CBP��.*
@^AZP/��KBAZAZP��;WA���qQI�+EÔADAZP+QfWZL���EHG�P~R#G �FO�O�P�WZADY���P+QD��A6�X�ÔWDY[KBQË@^L��BKMADYNWDþHO�G���WZþÔP/�HY����ÔY[Q���K-��@
G�Y[Q��BL[P-VÔYNWºKMQÔL���@BLNAZP>@MR��wL[P>@MRÔG¹WDK�@B��KMO��ÔLNP+WDP+�£@BYNL[EÔAZP-Y[Q·RUP��+A@��UWZYNKMQJ�
�dEÔP�WZK�WZþÔP-KBQHL���H@^ADWDY @^L�CFQÔK2��L[P>R��BP0K��&@^QÆ@^W�W�@-��CBP>A�KBQ�WZþÔP3]HQH@BL»CMP��-�Í@^QÆ@BRHRUP>RTKBAYNQ.�+LNEÍRUP>R,�HADY[ÿ�@-���
@^O��ÔL[Y^]D�>@�WZYNKMQ�WZþÔAZKBE��MþTþÍ@BGDþÔYNQ.�`�+@^QS� EÔADWDþHP+AdGDY��BQÔY�]D�+@BQfWDL��·RUP��+ADP~@BGDP�WDþÔY G-CFQÔK2��L[P>R��MP
@^QHR#Y[Q.�+ADP~@BGDP�WDþÔP�GDP���AZP�����K-�zWDþÔP�]HQH@BLÍCMP��,&(�+KBO��H@^AZPq7�9iaX�=9Afi>V*:@^QHR·@^L G�K0WZþÔP�G�PA��EÔAZY�W��
K���WZþÔP�WDA�@2TXP���WDKMA@��O�KFRÔP-���¸WJYNQ.�+ADP~@BGDP>G�WDþÔP�P+QfWZADK
�X��K-��WDþÔP�CMP��UGº@BQHR·RÔP>G�WDAZK2�FGw�H@BA�WZY[@BL
CfQHK2��LNP~R��BP�@^Q,@�WDWZ@
��CBP+AaO�Y��MþfW-þH@oÿBPK�M@BYNQÔP~R·KMQTWDþÔP0CMP���� AZKBO WZþÔP0CFQÔK2��Q�@�W�W�@-��CUG��
ê;ëbê �,ñXõ����Jò���ï.ü��Cñ�PñXó��qññ�ü�ö�ú �Vó�û"!��Vñ#Uï�îió�ûVñÿ
?�EÔLNWDY��ÔLNP��H@BA�WZYNP~GU�>@^QÈP�R���þH@^Q.�BPw@S��KMO�O�KMQÇCBP��,@��M@BYNQÇVH@BGDP>R,KMQÈý+La?�Y[QMWZP+A�@-��WDY[KBQ
@^QHR�WDþHPG �FQ.��þHADKMQÔY[GZ@�WZYNKMQ#�HADK
�ÍP>A�W��
�XtdQ.��PJW��aKO�H@^ADWDY[P>G%$'&J@BQHR($ � þH@oÿMP�G �FQ.��þÔAZKBQHY�0>P>R@^QHRwWDþFEHG%P�R���þH@BQ��BP~Rw@K��KMO�O�KMQwCBP��-�~WDþHP���þH@oÿMPºY RUP>QMWZY��>@^LFY[QMWZP+AZQH@^LÔG�WZ@^WDP~G º*)�+ ° )-, @BQHR�+@^QÈVÍP}�+KBQHGDY[RÔP+AZP>RÇ@TGDYNQ��MLNP�ý+Lº?.$ +�/ , ��ýJþÔP�P�R���þÍ@^Q��MPwK��J@H�+KBO�O�KBQÈCBP��,V
P�W��aP+P>Q
0 Ýµ:��H@BA�WZYNP~G��+@BQTWDþFEHGdVÍPw@
��þÔY[P+ÿBP~RTVX��W��aKËVH@BGDY��0GXWZAZ@^WDP��MYNP~G�Â.�H@^A�@^L[LNP>L�Y[QMWZP+A�@-��WDY[KBQ�ÔADK��+P>GZG�P~G·@^QÍR G�PAlfEÔP+QfWDY @^L�Y[QMWZP+A�@-��WDY[KBQ'�ÔAZK���P~GDGDP>G���\úYNWDþÔKMEUW�LNKfGDG�K��B�MP+QÔP>AZ@BLNYNW�� @BQ
@����ÔAZK-�HADY @�WZPdQFEÔO�VÍP>ADY[Q��,&£@BQHRTADP>QfEHOwV
P+AZYNQ���*&K-�5�Í@^ADWDY[P>G+�+@BQ�V
P3�
P+A@� KBAZO�P~R;�eGDYNQ��n�H@BAZ@BLNL[P+L�Y[QMWZP+A�@-��WDY[KBQµ�HADK���P~GDGDP>G���@^Q9P+ÿBP>Q9QFEÔO�VÍP>A,K��"�H@^ADWDY[P>G 0 Y G�Y[QÔY^�
WDY @^L[L��]RUY[ÿfY RUP~R]YNQfWDKu u�BAZKBE��HG�K��JYNQfWDP>AZ@
�;WZYNQ��4�H@^Y[AZGI&1$32�·4$65�*87"��YNWDþ% zà|9-·�¬�¬�¬;· 0 ¹ :��
9 ·?£zày9-·�¬�¬�¬;· 0 @^QHR 9;:à £D�5�ÍP>A � KMADO�Y[Q��Ç@1�Í@^Y[A@��Y G�P�& Y[QHRUP��
P+QÍRÔ@^QfW{*�CBP��ÈP�R���þH@^Q��MP
YNQn�H@^A�@^L[L[P+L�@BG�P�R��ÔL @^Y[QÔP~R V
P�� KBAZP-�PN/� WDP>A#P>@-��þ%�BAZKBE��6þH@BG#@u��KMO�O�KMQ6CBP��-�)�H@BYNA�G�K��
G �FQ.��þÔAZKBQHKBEHG)�MADKME��HG¹QÔK2� YNQfWZP+A�@-�;W:@-�M@^Y[Q,& Y[QË@0RUY[ÿfY RUP��¸@BQHR�[��KBQDlMEHP+A:G�WDA�@�WDP��-�.*�WDK�P�R���þH@^Q��MP�@��+KBO�O�KBQTCBP��
�ÔýJþÔY GJY[G�RUKMQÔP�EÔQfWDY[LzW��aK�AZP+O#@^Y[QÔY[Q����BAZKBE��ÍGaG@�FQ.��þÔAZKBQÔY�0+PdWDþHP]HQH@^L���KBO�O�KBQTCBP��ËY[QT@"]HQÍ@^LzY[QMWZP+A�@-��WDY[KBQS�ÔADK��+P>GZG�Â&1$ + ·<$ , * + ·A&1$>=�·4$3?�* , ·�¬�¬�¬;·A&1$'@BA + ·4$'@C*C@ ° , &(<*

D &1$ +E/ , ·4$3= / ?{* + ·A&1$3F / G ·<$>H / I * , ·�¬�¬�¬J·A&1$ J @ ° ,EK A + ·4$>@ ° , *8@ ° ? D ¬�¬�¬ D $ +�/ L L LE/ @ &VF�*�?� 0 Y G»KURÔR;�~WZþÔP�AZP+O#@^Y[QÔY[Q����Í@^ADW��U�J@^YNWZG3EÔQfWDY[LU@^L[LMKBWDþÔP>A 0 ¶�9��MADKME��HG�þÍ@oÿBP:P�R���þÍ@^Q��MP>R
@#�+KBO�O�KBQËCMP��#@^QHRËWDþÔP>QI�
P+A@� KBAZO#G�KMQÔPdL @BG�WºY[QfWDP>AZ@
�;WDY[KBQI�ÔADK��+P>GZG���YNWDþ�WDþÔP�G@�fQD��þÔADK-�
QÔY�0>P>R��MADKME��J�MýJþHP���KMO"�HLNP�RFYNW��wK-�zWDþÔY G:O�EÔLNWDY��G�H@BA�W���CBP��
�¸P�R���þH@BQ��BP�G6�+@BLNP~G&LNK
�M@BADYNWDþÔO�Y����Y�WZþ�WZþÔP�QFEÔOwV
P+A&K-�D�H@BA�WZYNP~G���YG� P-�3®�&4M4N�O 0 *��-!K^WDPaWZþH@�W&WZþÔP+�H@^A�@^L[L[P+LFÿ�@^AZY[@BQMW¹AZP�lfEÔY[ADP~G
P+YNWDþÔP>A�YNQÍRUP��
P+QHRÔP+QfWq�H@BAZ@BLNL[P+L:KMA0OwEÔLNWDY��ÔL[P�RUP>Rz�+KBO�OwEHQÔY��>@�WZYNKMQu��þH@BQÔQÔP>L[G���N-L GDK,QÔK^WZP
WDþH@^WJY[QS�ÔAZ@
�;WZY��+PKBQHL��#W��aK�ý+La?,GaYNQTP>@
��þI�MADKME��ËþH@oÿMP-WDK#@
�;WDY[ÿBP>L��#GDP+QHRT@^QÍRËAZP���P>YNÿMP
KBEUW6�ÔEUW-VÔYNWZG�����þÔP>ADP~@BGºWDþÔP0KBWDþÔP>AZGJY[QTWDþÔP3�MADKME��·KMQÔL��·AZP���P>YNÿMP-��qQT@�G�PAlfEÔP+QfWDY @^LzY[QfWDP>AZ@
�;WDY[KBQH�ÔAZK�+P>GZG�P~G��MW��aK#�H@BA�WZYNP~GP$ & @^QÍRQ$ � P�R���þH@^Q��MPd@���KMO"�
O�KMQÇCMP��Æ@BG�RUP~G@�+ADY[V
P>RÆV
P�� KMADP
�;Z@oÿFYNQ.�T@S��KMO�O�KMQÇCBP���WDþÔP��,VÍPA��KMO�P#@H�BAZKBE��R$ &TS �WDþH@^W-QÔK2��Y[QfWDP+A�@-��WZGY��YNWDþ,@�WDþÔY[A�RH�Í@^ADW��U$3V��Í@^QHRTG�K�KMQJ�HýJþÔY GY�a@i�
�Ô@�LNY[QÔP>@BA/��þH@^Y[Q& ¬�¬�¬�& &W$ + ·4$ , *�·<$ = *�·�¬�¬�¬{*�·4$ @ * D &�¬�¬�¬�&@&1$ +E/ , ·4$ = *�·<$ ? *=¬�¬�¬{*�·<$ @ * D ¬�¬�¬ D $ +E/ L L LX/ @ &kQX*
K���Y[QMWZP+A�@-��WDY[KBQ}�ÔAZK���P>GZGDP>G:Y Gw�ÍP>A � KMADO�P>RJ�X!K^WDPWDþH@^W�� KMA�WZþÔP��MADKME��#KBQÔL���KBQÔP�G�PAlfEÔP+Q.�+P
K���KBEÔW@�ÔEUW�GTþH@BGËWDK6V
P	��KBO�O�EÔQÔY��+@�WZP>R;�J@BG·Y�W�Y G·Y RUP+QfWZY��>@^LdWDK�@BLNLK�H@BA�WZYNP~G4&£ý+La?,G{*



YNQ6WDþÔPS�BAZKBE����5N��M@^Y[QJ�¹Y[QÀ�ÔA�@-��WDY���P·KMQÔL��õKBQÔPTý+Lº?,G�Y[Q WDþHPH�MADKME�� þH@MG�WZKÉ@
�;WDY[ÿBP>L��
G�P>QHR�@BQHRTADPA��P>YNÿMPdKMEUW@�ÔEÔW-VÔY�W�G��.��þÔP+AZP>@MG�WZþÔP0K^WZþÔP+A�GJY[Q·WZþÔP3�BAZKBE��TKBQHL��ËAZP��+P+Y[ÿBP
�FýJþHP��KBO��ÔL[P�RUYNW��õK��dWDþÔY G#OwEHL�WZY^�?�H@^ADW��õCBP��X�uP�R���þÍ@^Q��MP·G@�>@^L[P>G�L[YNQÔP~@^A���YNWDþ WDþÔP�QFEÔO�VÍP>A#K���H@^ADWDY[P>G��UYk� P-�C®�& 0 *��NGdP>@-��þ,CMP��TP�R���þH@BQ��BPB�HADK���P~GDG#&V�H@BAZ@BLNL[P+L3KBA�G�PAlMEHP+QfWDY @^LV*+�>@^Q,Y[QHRUP��
P+QÍRÔ@^QfWDL��,V
P
@�W�W�@-��CMP>R;�UWZþÔP�GDP��+EÔAZY�W���YNQ�WZþÔPq�ÔAZP>GDP+QfWZP>RTOwEÔLNWDY��?�H@^ADW��TG6��P>QH@^AZY[K�G6�+@BLNP~G�Y[QfÿMP+A�G�L��I�HADK-��ÍKMA�WZYNKMQH@^L¿WZK�WZþÔP0QFEÔOwV
P+AK����Í@^ADWDY[P>G��
Y íaîFïHâ�é&ð ñÉòXó�è-â�ïn�aã ��ïÔâ�â���é¹ïHòqî^ã���é¹çÍèòDê-â»ô

Nßý+Lº? G�WDAZP>@BO �+Y��HþÔP+AK�+@^QÇVÍP"��KBQÍGXWZADE.��WDP~R,@BG+� KMLNL[K2�-G��.��P+O�P>OwV
P+AdWDþH@^WdKBQD��P0W��aK�H@^ADWDY[P>G�@^AZP]G �FQ.��þÔAZKBQHKBEHGT@^QHR GDE.���+P>GZG�� EÔL[L��úP�R���þH@^Q.�BP>R9@6CMP��
�ºWZþÔP���ADP>O�@BYNQ G@�fQ����þÔADKMQÔKBEÍG¹YNQ#P~@-��þ"� EÔADWDþÔP>A:Y�WZP+A�@�WZYNKMQE& WDA�@2TXPA�;WDKMA@�wO�KURUP2*¹@^QÍR#�HADKURUE.�+P-P�lfEH@BLÔKBEÔW@�ÔEUW�G��
ýJþÔP,G �FQ.��þÔAZKBQHKBEHG�ý+Lº? GXWZADP~@^O �+Y��ÔþHP+A�Y[G�VÍ@BGDP>R�KBQ WZþÔP,YNWDP+A�@�WZYNKMQ6K-�K� ��KBE.�ÔLNP~R
QÔKBQ��¸L[YNQÔP~@^A�R��FQH@^O�Y��O� EÔQ.��WDY[KBQHGKß » &k² *��zýJþÔPwCMP��UG�WDAZP>@^O��BP>QÔP+A�@�WZKBA��>@^QÇGDKËV
PwÿFYNP��ºP~R
@BGJV
P+Y[Q��I��KMO��ÍKfG�P~R·K-�)��R��FQH@BO�Y��U]HLNWDP>A/�BP>QÔP+A�@�WZKBA�Ga@BQHR�@"]HQH@BLP&£G�WZ@�WZY��i*Y��KMOwVÔY[QÔP>A
GXW�@��BP�WDþH@^W¹@
�;W�G%GDY[O�Y[L @^A3WDK�@�WDþHADP~G�þÔKML[RB�BP+QHP+A�@�WDKMAw&�G�P>P8�%Y��BEÔAZP8:X*���ýJþÔPaYNQÔYNWDY @^LUG�WZ@^WDPaK��
WDþÔP�CBP��FG�WDAZP>@BO��MP+QÔP>AZ@^WDKBAaRUP��
P+QÍRÔG�KMQ#WDþHPdCMP�� º ¯°[±»@¼ &(² Û *&@^QÍR�WDþÔP�Y[QÔY�WZY[@BLNY�0>@^WDY[KBQËÿMP����
WDKBA3Á »@¼ &k²[Û6*���W�@-��þÉR��FQH@^O�Y��#]HL�WZP+A3�MP+QÔP>AZ@^WDKBAO��KMQHGDY[G�WZG�K-�a@^Q	¢E�¸VÔYNWUZ��&S�� &(��KMEÔQfWDP>A
ÿo@BADY @^VHLNP~GBÁ »6¼ &(² *@*w@BQHRõK-�U¢ ½��¸VÔYNW�E��=~�RUK2��QÀ�+KBEÔQfWZP+A�GH&keK~2��� $aý+�-G�*3��Y�WZþ�@ÇQÔKBQ��
LNY[QÔP>@BA#R��FQH@^O�Y��`]HLNWDP>ADY[Q��]GXW�@��MP-�&ýJþÔPS]HLNWDP+A#RUP��ÍP>QHRÔG�KMQ WDþHPTCMP��õKMA��+EÔAZADP>QMW�GXW�@�WZP&£G�WZ@�WZP�ÿ�@^AZY[@BVÔL[P>G º »@¼ &k² * *��¿ýJþÔPB�ÍG�P>EHRUK��¸A�@^QHRUKMO G�WZ@�WZP>G�K-�¹WDþÔP[Z��&S��-G@BADP�P�R�Í@^QHRUP~R
@^QHRúO�Y�RUP>R'��YNWDþ�WDþÔPÉCBP��úGXW�@�WDP
�w�ÍG�P>EHRUK��¸A�@^QHRUKMO�L�� O�KFRÔY^].�FY[Q���GDY��BQHG�K���WZþÔPÉCBP��
GXW�@�WDP
�UýJþÔP�GDEÔVHGDP�lfEÔP>QfWaY[QfWDP��MP+AJ@BRÔRÔY�WZYNKMQ�&(WwlfEH@�WZYNKMQ49i*�@^QÍR#ADP~RUE.��WDY[KBQ Õ WDK�@�GDY[Q��BL[P
G�Y��BQµ&£VÔYNW{*Bß » &(² *0P�RFWDA�@-��WZGwWDþÔP�KBEUW6�ÔEUW�K���WZþÔPTR��fQÍ@^O�Y��`]HLNWDP+A"�BP>QÔP+A�@�WZKBAA�»ýJþÔPI]HQH@^L
CBP��UG�WDAZP>@BOßKBEÔW@�ÔEUWaY[Ga@^Q`WPR���L[EHG�Y[ÿBP���tdA&K-�J� GDY��MQ#VÔY�W�G Õ Â�®�&(² *�à Õ +]\ Õ ,6\ ¬�¬�¬ \ Õ æ �
ýJþÔPIW�R��+LNEHGDY[ÿBP�� tdA�Y[Gw@^L G�K,EHGDP>R]@MG�WDþÔP�GXW�@�WDY��+@BLNL��ÇVÍ@^L @^Q.�+P>R	��KMOwVÔY[QÔP+A�WDK,�BP>QÔP+A�@�WZP
WDþÔPO��Y��ÔþÔP>A�WZP�RFW_^-&(² *P� ADKMO�WDþÔP�CBP��UGXWZADP~@^O)@^QHR#WDþÔPO�ÔL @^Y[QfWDP�RFWA�fYG� P-�]^�&(² *�à'®�&(² * \ $5&(² *��
ýJþÔP�QfEHOwV
P+A�K-�8�����+LNP~G�WDK,�+@BL��+EÔL[@^WDP�KBQHP�KMEUW@�HEUW0VÔY�WI&(��Y�WZþÉWDþÔPËGDP+AZY[@BL&ý+Lº?,�/NO*dY[G²8`Hà�&(� ¬�¢�åÀ�u*;åÀ<��

ýJþÔP�QÔP�RFW �qG�WZ@�WZPK� EÔQ.�;WZYNKMQ
a>b Â	cedgfed;cedgcihjkf�·lchàj´
¶39-·�9�¸X·�f%àj7�¶/½/·6½�>J¾%¿ &(\*
a>b &k®"· º »6¼ · Á »@¼ ·@ß » *mhj º�n»@¼ · &Ga
*

RUP�]HQHP>R�ÿfY @qWwlfEH@�WZYNKMQS:��U@MRÔ@��UW�Gº@BQHR�VÍKMEÔQHRÔGºWDþHPU]ÍL�WZP+A+��KFP�_`�+YNP>QMW�GO& WDþHP�G�WZ@^WDP2*:@BQHR
ADP��ÔADP~G�P>QfWZG�@�QÔKMQÔLNY[QÔP~@^AG�WZ@^WDP0E��¿RÔ@�WZP-�ÍYk� P-�UWZþÔP�CMP��UGXWZADP~@^O RÔP��
P+QHRÔGKBQ,@�QÔKMQ��uL[Y[QÔP>@BA
GXW�@�WDP��uO#@
��þÔYNQHP-�JNG�P�R��ÔL @^Y[QÔP>RÈYNQ SFPA�;WZYNKMQz:��¿WDþÔP�GXW�@�WDP�ÿ�@^AZY @^VÔL[P>G º »@¼ &k² *U�ÍP>A � KMADO @
AZ@BQHRUKBO �J@^L[C#��YNWDþTAZP��HPA�;WDY[Q���VÍKMEÔQHRÔ@BADY[P>G�YNQT@wG�WZ@�WZP�G@�H@
��PK-�»G�Y�0+P"&k:-½4å¡92* æ�ç �FýJþHP
ý+Lº? GXWZADP~@^O|�+Y��HþÔP+A0þH@MG`&k:
æ�çS¶n9i*�¬
&G:�½4å'9i* æ�çn�ÍKfGDGDY[VÔLNP�Y[QfWDP+AZQH@BL:GXW�@�WDP~G�RUY[ÿFY[RUP~R
YNQfWDK	��¬¢ G�WZ@^WDPTÿo@BADY @^VHLNP~G º »@¼ &(² *H³ä7^¶/½�·@½P>J@BQHRõWZþÔP,GD@BO�PTQFEÔOwV
P+A�K-�K��KMEÔQfWDP>A
ÿo@BADY @^VHLNP~GwÁ »@¼ &k² *8³u´
¶39-·�9�¸X�e-QÔL[YNCMPdKBWDþÔP>A�GXWZADP~@^O��Y��ÔþÔP>AZGaY[Q�KMEUW@�HEUWY� P+P>RÔVH@-��C#O�KURUP}&GtK�P
/*��FWZþÔP�CBP��UG�WDAZP>@BO®�&(² *aY GY� P>RTVH@
��C�WDK�WZþÔP0QÔP�RFW@�¸G�WZ@^WDPK� EÔQ.��WDY[KBQÆ@^QÍR·QÔKBW�WDK�WDþHPQZ��&S�� &£GDP+PB�%Y��BEÔAZPB:
*��NG·@BQ @^LNWDP>ADQH@^WDY[ÿBP
�&WDþÔP���Y��ÔþÔP+ADWDP�RFW�VÔYNWZGH�+@^QúV
P,� P~RúVH@-��C�&G$8�P
/*�Y[QHG�WDP>@MRÀK���WDþHP



N−bit LFSR

N L−bit U/D−CTRs

Σ
σ

N−bit LFSR

N L−bit U/D−CTRs

Σ
σ

N−bit LFSR

N L−bit U/D−CTRs

Σ
σ

w1 w2 w3

y(t)
3y(t)

2
y(t)
1

φ
t

O(t)

c(t)p(t)
OFB

CFB¦P§�¨ ´poH´ y¹|Mn�p¸tMjf{�|BgXv~jMv~efpdy&Ê3Ì p¸rqgXn;`>bå{Zkm�f|MnZgx v>gUq Å �BÁ»ÕJ¾sr�`>jf¶Æ�¹¾sr�b0v^¶Bn�pd`+gXn
kmjf¶Mk�{�`+rXn�¶HÁ µ }srXnZgXjF`�rXk�l~n�}st��MrX|Mn-Ý
¾ Ï ½�p�{�`>jË`+}mpqv0|F`;lon-`>j#kmj�rXnZgXjf`>}Íx[n�n;¶BcF`~{ Å x[gXv~b rX|Mn�pqefb��
b�`�rXkmv~j,`+jF¶�rX|BgXn�pq|fv>}N¶Bkmjfh�eMjfksrXp ¤ ¶Mv>rqrXn�¶�}mkmjfn�p@¥agXn�pqef}srXkmjfh#kmjTrX|Mn0pqv^{�`>}m}mn;¶et upv�w-x	y�z�{|~}8z8z
�m�p}C�����U�����C����vBz�� �����HÃ:ksrX|#`pqkmb0�f}mnJpq|fksxNr&gXn�h~kmp¸rXnZg ¤ Ã:ksrX|�jfv>jM�£}mkmjfn;`�g&x n�n;¶BcF`>{ Å ¥3�UnZg:|MkN¶M¶Mn�j
eMjfksr&gXn��M}N`>{Zkmjfh�rX|Mn�Ý
¾ Ï ½Á

KBEUW6�ÔEUW�VÔYNWZG3&£GDP+P3�%Y��BEÔAZPO:X*��UO#@^CFY[Q���WDþÔP�Y[QMWZP+AZQH@^LzG�WZ@^WDP3��þH@^Q.�BPd@BL[GDK�RUP��
P+QHR�KBQ�WDþHP�ÔL[@BYNQfWZP�RFW%@BQHR3�FYNP>L[RÔYNQ�� a b@&<^2· º »@¼ ·@Á »@¼ · ß » *�YNQ#W�R��ÔAZP>GZG�Y[KBQqa�iN-QwYNQfWDP��BAZY�W���O�P���þH@BQHGDYNO
Y[G+�HADP~G�P>QMW-Y[QTWDþÔP�ý+Lº? GXWZADP~@^O��+Y��HþÔP+A-Y[Q4$8�P
 O�KURUP-�C�EÔP�WZK�WDþÔPB� P+P>RÔVH@-��C·WDK�WDþHP
QÔP�RFW �qG�WZ@�WZP�� EÔQ.��WDY[KBQJ�%@,O#@^QÔY��ÔEÔL @�WZYNKMQÉK-�ºWZþÔPI�+Y��ÔþHP+ADWDP�RFWwL[P>@MRÔG�WZKÆ@1��þH@^Q.�BP�K��JWDþHP
GXW�@�WDP�E��¿RÔ@^WDPÆ@�W#WZþÔP�ADPA��P>YNÿFY[Q��õG�Y RUP-�PNøO#@BQÔY��HEÔL[@^WDP~R�CMP��UG�WDAZP>@^O WZþFEHG�LNP~@BRÔG�WZKõ@
RUP��+A@��UWZYNKMQI�£@BYNL[EÔAZP-�t�� WDP+Q��HY[QÇ@#AZP>@^L3@����ÔL[Y��+@�WZYNKMQ,K��:@ËG�WDAZP>@BO �+Y��ÔþHP+AA�HYNWdY G-AZP�lfEÔY[ADP~R·WZKËEHGDP�@ËGDY[Q��BL[P
CBP���O#@^Q��WDY[O�P>G3VÔEUW)��Y�WZþ�@-RUY��¿P+AZP+QfW%Y[QÔYNWDY @^L[Y�0~@�WZYNKMQ0ÿBP���WDKMAw&V�qI3*��2eGDY[Q����ÔEHVÔLNY��ºYNQÔYNWDY @^L
ÿo@BLNEHP>G0K-�ºWZþÔPRZ��&S��G���:
æ�ç�¶µ9��qIdG#�+@BQÈV
PI��þÔKfG�P>QJ�=c:P�WA��WDþHP·ý+Lº?,��N)@^L[LNK2�-GK� KMA�£@BG�WËADP~G �FQ.��þÔAZKBQÍGD@^WDY[KBQ6@MG#@ÈQHP�� CBP��%�+@^Q P�_`�+YNP>QMWZL���VÍP,P�R���þH@^Q��MP>R;�PL�ADP>LNY[O�YNQÍ@^A6�
GXW�@�WDY G�WDY��+@^L�@^QH@BL��UGDY[G��FY[P+L RÀWDþHPÆCBP��FG�WDAZP>@BO�WZK VÍPÇYNQHRÔY[G�WDY[Q��BEHY[GDþH@^VHLNP,� AZKBO A�@^QHRUKMOE�NaW�WZ@
��CUGJKBQ�WDþÔP�G�WDAZP>@BO���Y��ÔþÔP>A-GXWZYNL[L�þH@oÿMPdWZK�VÍP0Y[QFÿBP>G�WDY��M@^WDP~R;�
� �9íJûUñ��oûMð ó���â»ð â»êºîFé%îÔò8�ºê é&êöø÷Àâ»ô����XîÔô

ýJþÔPz���@���q�+���{�V�(�E�4�
�{�X�b�C���/��Ù2���2�b�XÚR�U�6�{�X�V�G�����4���@���q&£ý+La?,�/NdG�*#7�9�F2>P�+@BQÇV
P"� EÔQ.�{�
WDY[KBQH@BLNL��#G�P��H@^A�@�WZP>R#Y[QfWDK�W��ºK�O�@BYNQTGXWZADED�;WDEHADP~G���tdQÔP�GXWZADE.��WDEÔAZPU�+KBO��ÔAZY[GDP>G�WDþHPKZd@^QHR�
G�þH@BCBP2~2��P��À$ºKMQUWDAZKBL[LNP>A#@BG��aP+L[L-@BG�WDþHP�
ºYNW@�Í@-��C�@��MPSeQÔY�WT@^QHR6WDþÔP,\]@�W���þHRUK
�.�¹WDþHP
K^WDþHP+AG�WDAZE.�;WZEÔAZPO�+KBQfWZ@BYNQÍGJWDþÔP�ý3AZP+PBL&@^AZYNW��·?,@-��þÔY[QÔPBeQÔY�W�� KBA��>@^L���EÔL @�WZYNQ���WZþÔP�VH@MG�Y��
ý+Lº?y� EÔQ.��WDY[KBQHG#&�SFPA�;WZYNKMQ4:
*��C�%Y��MEÔADPB<M@��BY[ÿBP~G�@^Q,K�ÿBP>ADÿFY[P��9K��¹WDþÔPwþH@^A�R��J@^AZP�G�WDAZE.���
WDEÔAZP-�¿ýJþÔP#Zd@^QHRHG�þH@BCBP2~2��P��,$ºKBQfWDAZKBL[L[P+A�eQÔY�W�þH@BQHRUL[P>G�WZþÔP�CBP���WDA�@^QÍG�O�Y GDGDYNKMQh& P>ÿBP+Q��
WDEH@BLNL��T@�� WDP>A��ÔAZYNÿ�@
����@^O��ÔL[Y^]D�>@�WZYNKMQC*8��YNWDþÇ@BQ,P+Q.�+A@��UWZYNKMQ,EÔQÔYNW�@^QÍRTWDþÔP�VÔY�WK�H@-��C�@-�BP
P�R���þH@^Q.�BPq�HADK���P~GDG���Y�WZþÇWZþÔP�K^WDþHP+AK�H@^ADW���VX�,EÍG�Y[Q���@TGDYNO��ÔL[P�AZP�lfEÔP~GXW�@^QHRÈ@-��CFQÔK2��L��
P>R��MPwþH@BQHRÔGDþH@^CMPq�ÔAZK^WZK�+KBLG�D�¸W0@��.�ÔADK�ÿMP>GJWZþÔP�þH@^QÍRULNY[Q���K��ºRUY��¿P+AZP+QfW�G@�FQ.��þÔAZKBQÔY�0>@^WDY[KBQ������L[P>G�VÍP+W��ºP>P+Q�W��aK�CBP��wP�R���þH@BQ��BP+�Í@^ADWDY[P>G:Y[Q#KBA�RUP>A&WDK#�ÍP>ADO�YNWa@�AZP��BEHL[@^WDP>R�CMP��X�3@BQHR



Sync Counter

Watchdog

Iteration Counter

Sync Error

Key

Handshake
Key

Bitpackage

Handshake
Bitpackage

T
re

e 
Pa

ri
ty

 M
ac

hi
ne

C
on

tr
ol

le
r

H
an

ds
ha

ke
/K

ey

Bitpackage

Unit

R
eg

is
te

r
B

an
k

¤ `i¥
Computation

Adjustment

Accumulator

Linear Feedback Shift Register

Memory

Parity Bit
Weight

Weight

¤ c�¥
¦P§�¨ ´p�H´ ¤ `2¥_r¹`+pqkN{w¶Mk�`+h>g�`>b v+x¹rX|fn0_a`>jF¶Bpq|F` Å n��+Þ�nDt��%v>j�rqgXv~}m}mnZgdÃ:ksrX|TrX|Mn�Â,`�r�{�|f¶Mv~h�`>jf¶
rX|Mn[r%ksrX�F`~{ Å `>h~nwiajMksr;Á ¤ c�¥�y¹|fnwpqnZgXk�`>}¹yÍgXn�n�Êz`+gXksrutÇÌ�`>{�|Mkmjfnwiajfksr;Á¿y¹|fnwy&Ê%Ì {Zv~j�rqgXv~}m}mnZg
p¸r�`�rXn�b�`~{X|fkmjfnak�p:v>b0kmrqrXn�¶wx v+gJ{D}N`�gXksrut�Á

VÔY�WB�Í@-��C�@��MP�P�R���þH@^Q��MP#�HADK���P~GDG��;N)CBP��ÆY G�þH@^QHRÔP>RÉK�ÿBP>AK��þHP+QÉWDþÔPËG@�FQ.��þÔAZKBQÔY�0>@^WDY[KBQ�ÔADK��+P>GZGºY GY]HQHY[GDþÔP>RJ�ÔYNQÍRUY��>@�WZP>RTV�·@^Q�@-��CFQÔK2��L[P>R��MP�GDY��BQH@BLk�NG�RUP~G@�+ADY[VÍP~R·Y[Q,SFP���WDY[KBQ,:����aP�Y[O��ÔL[P+O�P+QfWDP~R�WDþÔP�VÔYNW/�H@-��C�@-�BPK�BP+QHP+A�@^L[Y�0~@�WDY[KBQ·K��
WDþÔPS�ÔAZK^WDK��+KBLU7�9�<2>G�5�¸W�AZP>RÔE.��P~G#�+KBO�OwEÔQHY��>@�WDY[KBQ RÔK2��QõWDKÉ@,� P����H@-��C�@��MP>G��J�qQ6V
K^WZþ
@^A���þÔY�WZP���WDEÔAZP>G��UWDþHP�
aY�W6�H@-��C�@-�BPBe-QHY�WO�H@^ADWDYNWDY[KBQÍG�WDþHPq�H@BADYNW��·VÔYNWZG"&(WwlfEH@�WZYNKMQz9i*w� AZKBO
WDþÔP,ý+Lº? e-QÔYNW#YNQ�WDY��BþfWDP>A�VHY�WËGDLNY���P~G��)�qQ�@MRÔRUYNWDY[KBQJ�¹YNWËG�P>ADY @^L[Y�0>P>G�WDþÔP�Y[Q.��KMO�Y[Q��ÈVÔY�W�H@-��C�@��MP>G`� ADKMO K^WDþHP+A,ý+Lº? � KMATWDþÔPõ@BRH@��UW�@�WDY[KBQv&(W�lfEH@^WDY[KBQ :X*���ýJþÔP�
aY�W6�H@-��C�@��MPe-QÔYNW-þH@^QÍRULNP~G�VÔYNW/�H@-��C�@-�BP�LNP>Q��^WZþHGJE��TWDK¡ ÈVÔY�W�GB&£RÔP��
P+QHRUY[Q��#KMQ�WZþÔP0CBP��ËL[P+Q��BWDþC*{�

ýJþÔP�\]@�W���þHRUK-��G�E.�ÍP>ADÿFY G�P~G�WZþÔPaG@�FQ.��þÔAZKBQÔY�0>@^WDY[KBQ0V
P�W��aP+P>Q�WDþHP�W��aK��H@BA�WZYNP~G��A��þÔY���þ
Y[G&RUP+WDP>ADO�Y[QÔP>R�V�0WDþÔP/��þHKMGDP+Qq�Í@^A�@^O�P�WZP+A�G%@BQHRwWDþÔPJA�@^QHRUKMO YNQHY�WZY[@BLÔÿ�@^L[EÔP>G%K��
WDþHP8�Í@^A@�
WDY[P>G��3ýJþÔP`�¸WZP+A�@�WZYNKMQz$ºKMEÔQfWDP+AwYNQ]WZþÔPË\]@�W6��þÍRUK-�1�+KBEÔQfWZG0WDþÔPËQFEÔO�VÍP>AwK-�aP�R���þÍ@^Q��MP>R�H@^AZY�W��ÀVÔYNWZG��Y�¸WS�MP+QÔP>AZ@^WDP~G·@ G �FQ.��þÔAZKBQHY�0~@�WDY[KBQÀP>ADAZKBAu&�S�FQ.�uW:AZADKMA{*{��Y���WDþHP+AZPÈY G·QHK
G �FQ.��þÔAZKBQHY�0~@�WDY[KBQ���YNWDþÔY[Q·@�G@�
P���Y�]D�QfEHOwV
P+AaK��zY�WZP+A�@�WZYNKMQHG��
�qQ#WDþHY[G8�+@MG�P
�^WDþHPdG@�fQD��þÔADK-�
QÔY�0~@�WZYNKMQ#�ÔAZK���P~GDG%Y G¹WDAZY��
�BP>ADP~Rw@��f@^Y[QJ��ýJþÔPS�FQ.�/$ºKBEHQMWZP+A&Y G¹QÔP+P~RUP>R�WZK�RÔP�WDP>ADO�Y[QÔPJWDþHP
G �FQ.��þÔAZKBQHY�0~@�WDY[KBQ�K��¿WZþÔPý+Lº?ÆG:V�#�+KBO��H@^AZY[Q���@^QHR��+KBEÔQfWDY[Q���PAlfEH@^LÔKMEUW@�HEUWºVÔYNW��H@
��CX�
@��BP~G���¸W�Y GºY[Q.�+ADP~@BGDP>R`��þHP+Q�@�GDP+QfW�VÔYNWY�Í@-��C�@��MPd@^QÍRËWZþÔP3��KBAZAZP>G@�ÍKMQHRUY[Q��wAZP��+P+Y[ÿBP>RËVÔY�W�H@-��C�@��MPJY[G&Y RUP>QMWZY��>@^LÔ@BQHR�K^WDþHP+A6��Y[GDP/��L[P>@BADP~R;��NúG �FQ.��þHADKMQÔY�0~@�WZYNKMQwY G&ADPA��K
�BQÔY�0+P~Rq��þÔP>Q
@�G@�ÍPA��Y�]HP>RÇQFEÔOwV
P+A�K��ºP�lfEH@^L¹VÔYNWO�H@-��C�@��MP>GdY[G�AZP>@
��þÔP>R;�>
aK^WDþ]S�FQ.�{�-@BQHR1�¸WZP+A�@�WDY[KBQ��$ºKBEÔQfWDP>A:@^AZPY�ÔADK
�BA�@^O�O#@^VÔL[PP� KMA:ÿ�@^AZY[@BVÔL[Pa@oÿMP+A�@��BPaG �FQ.��þHADKMQÔY�0~@�WZYNKMQ�WDY[O�P>G:GDEÔV�TXPA�;W&WZK
WDþÔPB��þÔKfG�P>QTý+La? G�WDAZE.��WDEÔAZP-�
¢�ëkì ù�ñXîiû(ïB�YíQ#3ö¤£Eü�ûbó
�Y��
P>ADP>QfWP� ADKMO WZþÔP-AZP>@^L[Y�0>@�WZYNKMQ�Y[Q17�9�F2>?�^WZþÔPGDP+AZY[@BLNL���AZP>@^L[Y�0+P>R�ý+Lº? eQÔYNWw�+@BL��+EÔL[@^WDP~G&@�H@^AZY�W��wVÔY�WaG�P>ADY @^L[L��wYNQ�WDY[O�P-@^QHR�Y G:@K� EÔL[L��#�H@^A�@^O�P+WDP+AZY�0>@^VHLNPaþH@^A�R��J@^AZPaG�WDAZE.��WDEÔAZP-�BýJþHP�H@^A�@^O�P�WZP+A�G��À�2¢å@BQHRq½É@BG5�aP+L[LÔ@BG3WDþÔPJVÔYNW��H@-��C�@-�BP�L[P+Q.�^WDþ��+@BQwV
P�G�P+W&@BADVHY�WZAZ@BADY[L���Y[Q
KBA�RUP+A�WZK·@BRÔK-�UWdWDþÔY G@BA6��þÔYNWDPA�;WZEÔADPwÿo@BADY @^QfW+� KMAdRUY��
P>ADP>QfWdG �UG�WDP>O P>QFÿfY[AZKBQÔO�P+QfW�G��HýJþHP
G�P>ADY @^L:ý+La? eQÔYNW#��KMQHG�Y G�WZG0K-�J@,ý+La? �+KBQfWDAZKBL:G�WZ@^WDP#O#@-��þHYNQÔP
�»@¥Z��&S��3�%@�\ÈP>Y��MþfWN����+EÔOwEHL[@^WDKBAA�:@	L&@^AZY�W��i
aYNWS$ºKBO��ÔEUW�@�WZYNKMQ @BQHR6\ÉP+Y��BþfWINdRiTXEHG�WDO�P+QfWHeQÔY�W·@BQHR @



O�P>O�KBA6�u&k�3Y��BEHADP"<^VC*{�
ýJþÔP�ý+Lº? �+KBQfWDAZKBL[L[P+AY GdADP~@^L[Y�0>P>R,@BG�GDYNO��ÔL[PB]HQHY�WZP�G�WZ@^WDPwO#@����þÔYNQHP-�C�¸W�þH@BQHRUL[P>GWDþÔP�Y[QÔY�WZY[@BLNY�0>@^WDY[KBQÆK-�:WDþHP�ý+La?	�HWZþÔP�@BRÔ@-�UWZ@^WDY[KBQ,��YNWDþÆWZþÔP"�H@^AZY�W��
VÔY�W�G-K-�%WZþÔP�VÔYNW��H@
��C�@��BPK� AZKBO WDþÔP�KBWDþÔP>A/�H@BA�W��T@^QHRE��KMQfWDAZKBL GaWDþÔPB�Í@^AZY�W��S�+@^L���EHL[@^WDY[KBQ
@^QHR}�aP+Y��BþfWº@MRiTXEHG�WDO�P+QfWA�FýJþHP�Z��&S��µ�BP>QÔP+A�@�WZP>G¹WZþÔPU�ÍG�P>EHRUK�A�@^QHRÔKBO�VÔYNWZG�� KBAºWDþÔPdYNQ���ÔEUWZGwÁ »6¼ &(² *&K��zWZþÔP�ý+La?	�FýJþÔPUL&@BADYNW���
aYNW+$ºKBO��ÔEÔWZ@�WZYNKMQI��KMO��ÔEUWDP~G:WZþÔPKMEUW@�HEUW8�Í@^A@�
Y�W��u&(W�lfEH@^WDY[KBQu9i*º@^QÍR·WZþÔP0\ÉP+Y��BþfW�NRiTXEÍGXWZO�P>QfWUe-QÔYNW@-����KMO"�HLNY G�þHP>GaWDþHP�@BRÔ@-�UWZ@^WDY[KBQ&(W�lfEH@^WDY[KBQz:
*{��ýJþÔP�\ÈP>Y��MþMWqNU���+EÔOwEÔL @�WZKBA3��KMO��ÔEUWDP~G�P>@
��þÉGDEÔO�K-��WDþHPËG�EÔO�O#@�WZYNKMQ
EÔQÔYNWZG��Wº@-��þ`�Í@^ADWDY @^LHAZP>GDEÔLNWaO�EHG�WºV
PWZP+O��ÍKMAZ@BADY[L���G�WDKMADP~R#Y[Q#WDþÔP�O�P+O�KBA6�-�FRUEÔPdWDK�WDþHP
G�P>ADY @^L��HADK���P~GDGDY[Q��0K��zWZþÔPdGDEÔO�O#@�WDY[KBQ#EHQÔY�W�G��FýJþÔP-O�P>O�KMA@�
�BY[O��ÔLNP>O�P+QfWDP~RË@BGº@�G�Y[O��ÔL[P
ADP��BY GXWZP+AJVH@^QHCC�ÔG�WDKMADP~GºWDþÔPO�aP+Y��BþfWZGJ@^QÍRËWZþÔP0KBEUW6�ÔEUW-VÔYNWZG8� AZKBO WDþÔP�GDEÔO�O#@�WDY[KBQTEÔQÔYNWZG
YNQ�KBA�RUP+AºWDK"�ÔAZK�+P>GZG:WZþÔP�VÔY�WY�H@
��Co@-�BY[Q��.�X�¸W+��KBEHL[R�@^L G�K�VÍP�YNO��ÔL[P+O�P>QMWZP>RT@BGa@�AZP��MY[G�WDP>A]HLNPU��KBO��
KMGDP>R�K��zGDP+ÿBP>AZ@BL�HY����k�ÍK-�HG��BýJþÔP-O�P>O�KMA@��G�Y�0+P-RÔP��
P+QHRÔG�KBQ�WDþHP-LNP>Q��^WZþ#K��¿WDþHP
CBP��
�J��þÔY���þõY[G�P�lfEH@^L:WDK4� ¬�¢y¬-½/�»ýJþHPËQFEÔOwV
P+A�K-�/������L[P>GO� KMAq�+@BL��+EÔL @�WDY[Q��Æ@¥ =�¸VÔYNW�H@-��C�@��MPdY G/² ±B¦ à�&k:	 H¶n9i*�¬X&(� ¬�¢�åÀ�u*;åÀ<��
¢�ëbê §HñXÿiú��bó�ÿL&@^A�@^O�P�WZP+AZY�0~@^VÔL[PwGDP+AZY[@BL%ý+La?,�/NGO�aP+AZP�RÔP>GDY��MQÔP>RÉ@^QHRÈG�Y[OwEHL[@^WDP>RÇV�ÆEHGDYNQ��TIUZU��Z&(��KMO��H@^AZP}7^9�F2>V*{�H\úþÔY[L[Pw@}�)LwMON+�¸AZP>@^L[Y�0>@�WZYNKMQH�J@BGJEÍG�P~RI� KMA-P>@MG �H�ÔAZK^WDKBW���ÔYNQ.�.�ÔG�WZ@^Q��
RÔ@^A�R1��P>LNL�N�S�@$��uAZP>@BLNY�0>@^WDY[KBQ,�ÔAZK^WZK^W���
P>G/�aP+AZPwVHEÔYNL R,WZK�ÿMP+AZY^�V�TWZþÔP�GDEÔYNWZ@BVÔYNL[YNW���@MGd@BQ
P+OwV
P>RHRUP>R�G �UG�WDP>O���KMO"�
KBQHP+QfW���ýJþÔPJEÔQHRÔP+AZL��FY[Q��U�HADK���P~GDG%Y G¹@Uo6¨�9Af	©·GDY^R�¸L[@i�MP+A�$J?4t�S�ÔADK��+P>GZG#��YNWDþ�9ª¨ f~« GDE����ÔL�� ÿBKML�W�@��MP·VH@MG�P~R6KMQ WDþHP1ed?4$)LNY[VÔA�@^A6�'7 :-\i>G�:ýJþHPTL[Y[QÔP>@BA��KBO��ÔL[P�RUYNW��ËK��%WDþHP0CBP��·P�R���þH@^Q.�BPK�ÔADKBWDK���KMLzG@�>@^L[P>GY��YNWDþTWDþÔP�GDY�0+PB� ¬�¢ K��3WDþÔP�ý+La?
GXWZADE.��WDEÔAZP-�.��þÔY���þÆRÔP�]HQÔP~GJWDþHPwG�Y�0+PB� ¬A¢ ¬�½ÀK��%WDþHP�CBP��-�Ô\ÉPq��þÔKfG�PB�yà <.�Í@�O#@2RUY��
O�@BLJ¢ à¡f-f�@BQHRH½hà'F"� KBAaWDþÔP�GDP+AZY @^Lz@^A���þÔYNWDP���WDEÔAZP-�UýJþÔY GJL[P>@BRHGaWDK#@wCMP��·GDY�0+P�K��%E��
WDK,9�oXQ�\wVÔY�WA�

ýJþÔP}��P+L[L��¸@BADP~@4&(�%Y��BEÔAZPOFM@
*dK-��WZþÔPËG�P>ADY @^L&ý+La?,�/N�G@�>@^L[P>G�@��.�ÔADKiRUY[O#@�WDP>L��,L[Y[QÔP>@BA
RUEÔP�WDKTWDþHP#LNY[QÔP>@BA�YNQ.�+ADP~@BGDP�Y[QÉADPAlMEHYNAZP>RÇO�P>O�KBA6�Ç@^QHRÇAZ@BQ��BP~G�@^AZKBEÔQHR�oB¨�9-9�G@lfEH@BADP��
O�Y[L[LNY[O�P�WDP>A}� KBA�WZþÔP,YNQFÿMP>G�WDY��M@�WZP>R6CBP���G�Y�0+P~G��&ýJþÔP,QFEÔO�VÍP>A#YNQ VÔA�@-��P~G�RUP+QÔKBWDP~G�EHG�P~R
GXW�@^QHRÔ@BAZR}�+P+L[L[G��!-K^WZP-�MWDþH@^WºO�KMG�WºK-�zWDþÔP�@^AZP>@0Y G��+KBQHGDEÔO�P>RËVX��WZþÔPO�P+O�KMA@�
�BV
P��+@BEHGDP
K���WDþHP·QÔPA��P>GZGZ@^A6�ÈG�WDKBA�@��MP#K���WZþÔPI�H@BA�WZY[@BL�AZP>GDEÔLNWZG��3ýJþÔPT@-��þÔY[P+ÿ�@^VHLNPI�+LNK���CX�G� ADPAlMEHP+Q.���&(�%Y��MEÔAZPKFMVC*ºA�@^Q��MP>GaVÍP+W��ºP>P+Q,:�fXQ�@BQHRHFa93p,rUs"� KBAJWDþHP0YNQFÿBP~GXWZY��f@�WZP>RËCMP��ËL[P+Q.�^WDþÍG��NRÔRUYNWDY[KBQÍ@^L[L��
�C�aPwP~GXW�@^VÔL[Y G�þÔP~R,WZþÔPwWZþÔAZKBE��Mþ��ÔEUWK� KBA�CBP���P�R���þH@^Q.�BPH&£Yk� P-�¿CMP��UG��
P+A
G�PA��KBQÍRD*zGDEÔV�TXPA�;W%WDK-WZþÔPJ@oÿBP+A�@��MP:G �FQ.��þHADKMQÔY�0~@�WZYNKMQ�WDY[O�PaK���FXo-o�YNWDP>AZ@^WDY[KBQHG�� KBA¹RUY��
P>ADP>QfW
CBP��#L[P+Q.�^WDþÍGJYNQ,�%Y��MEÔAZPKFX�2��N��ÔA�@-��WDY��+@^L[L��#]ÍQÔY�WZPB��þH@^QHQÔP+LJ�>@��H@
��YNW��#Y[GJQÔP��BL[P���WDP>R·þÔP+AZP-�
\ÈPw@MGDGDEÔO�P>RTWZþÔP�O#@2RUY[O#@^L[L���@-��þÔY[P+ÿ�@BVÔLNPB�+LNK���CI� ADPAlMEHP+Q.���H��YNWDþ,AZP��f@^A�R·WZK#P>@
��þ,CBP��
LNP>Q��^WZþJ�2��þÔY���þ"�>@^Q�VÍP�@-��þHYNP>ÿBP>RwV�q�Y��BYNWZ@BL�L:þH@MG�P�Z�K���C[Z»KfK
�H&k�UL¬Z Z5*{��ADP��M@BAZRUL[P>GZG3K��
WDþÔP�G �UG�WDP>O�GY�+LNK���C"� ADPAlfEÔP+Q.���-�UýJþÔP�G�P>ADY @^L¿ý+Lº?1�/N9@
��þÔY[P+ÿBP~Gº@wO#@2RUYNO#@BLÍWZþÔP+KMADP+WDY��+@BL
WDþÔAZKBE��Mþ��ÔEUW�YNQ6WDþÔPE �rUs��¸AZ@BQ��BP
��N+� WZP+A�WDþHP·Y[QÔY�WZY[@BL�G �FQ.��þÔAZKBQHY�0~@�WDY[KBQ��zWDþÔP�WDA�@2TXPA�;WZKBA6�
O�KURUP�@^L[LNK2�-GaWZK#YNQ.�+ADP~@BGDP�WDþÔP�WDþÔAZKBE��Mþ��ÔEUW-V�·W��ºK#KMAZRUP>AZGJK-�&O�@-�BQÔYNWDEÍRUP�RUEÔP0WZK#WDþHP
ADP~RUE.��P~R]QFEÔOwV
P+A�K-�/������L[P>GO� KMA�KBQHPËVÔYNWq�H@-��C�@-�BPË@^QÍRÇWZþÔPËO�Y GDGDYNQ.�4��KMO�O�EÔQÔY��+@^WDY[KBQ& Y[QMWZP+A�@-��WDY[KBQC*�K�ÿMP+AZþÔP>@MR;��ýJþÔY G�O�KURUP·Y G�Y RUP>QMWZY��>@^L�WDK,WZþÔP·G�WDAZP>@^O ��Y��ÔþÔP>AwO�KURUP·@BQHR�ºP�@^L G�K�@����
KBY[QfWºWZþÔPWZþÔP+KMADP+WDY��+@BLHWZþÔADKME��Bþ.�ÔEUWK&£VÔYNW �¸AZ@^WDPi*:K��»WDþÔP�ý+Lº? G�WDAZP>@BOä��Y��ÔþÔP+A��þÔY���þ�Y GJYNQTWZþÔPqp,r�s-�¸AZ@BQ��BP
��3Y��BEHADPKFMR�G�þÔK2�-GºWZþÔADKME��Bþ.�ÔEUW�ADP��M@BAZRUY[Q���CMP��ËP�R���þH@^Q��MPd@BQHR�G�WDAZP>@BO��Y��ÔþÔP>AJGDEÔV��TXP��;W�WDK�@3!��)$�@^QHR�@3�/�5���µ�+KBO�OwEHQÔY��>@�WZYNKMQ���þÍ@^QÔQÔP>LH@^QÍRwWZþÔP+Y[A:VH@BQHR���Y RFWDþÍG��
�qQ#CBP��



0.06

0.08

0.1

0.12

0.14

0.16

0.18

72 132 264 528 1056

0.049 (1468 cells)
0.058 (1662 cells)

0.076 (2390 cells)

0.110 (2637 cells)

0.178 (3948 cells)Serial TPMRA

¤ `2¥ µ gXn;`�� �¡®C�Íl^p�Á Å nZt�}mn�jfh+rX|¥� ¯-° Ä �
300

320

340

360

380

400

420

440

460

72 132 264 528 1056

471
469

384

314

285

Serial TPMRA

¤ c�¥ Ï �Un�n;¶R� ±�²�³��
l^p�Á Å nZt�}mn�jfh+rX|¥� ¯-° Ä �

10000

100000

1e+06

1e+07

72 132 264 528 1056

27363
15885                        (key ex.)

6790

2839
1303

1.9e+07
1.2e+07                        (cipher)

6.8e+06
3.4e+06

1.7e+06

¤ {�¥ µ lonZg�`+h~n Å nZt nZÄM{�|f`>jfh>nÇg�`�rXnÉ`+jF¶
p¸rqgXn;`>b {Zkm�f|MnZg cfksrq� g�`+rXn´� ²�³p� ¤ }mv>h>�
pX{�`>}mn;¶¥-l^p�Á Å nDt�}mn�jfh+rX|¥� ¯-° Ä � ¤ kN¶Bn;`>}mkmÐ�n;¶
kmjMÎFjMksrXn�{�|f`>jMjfn�}ÔcF`+jF¶^Ã:kN¶^rX|�¥

50

100

150

200

250

72 132 264 528 1056

8 RFID, 10 kbps (key ex.)8 8 8 8

31
RFID, 10 kbps (cipher)

31 31 31 31

237

NFC, 424 kbps (cipher)

236 233 227
215

145

NFC, 424 kbps (key ex.)

144 141 135
126

¤ ¶�¥ µ lonZg�`>h>n Å nZt6nZÄM{�|f`>jMh~n�g�`+rXnÇ`+jF¶
p¸rqgXn;`>b {Dk��M|fnZg�cfksrq� g�`+rXne� ²�³p�wlBp�Á Å nDt
}mn�jfh+rX|¥� ¯-° Ä � ¤�µ ¾
� `>jf¶ß½º¾¿�u� {�|f`>jB�
jfn�}¶���MgXv>rXv^{Dv~}�¥

¦P§�¨ ´�·
´fÏ nZgXk�`>}fy&Ê%Ì�½ µ �Uv>p¸rq��p¸tBj�rX|fnZpqk�p»`�gXn;`+�£v~�BrXkmb0k�ÐZn;¶dgXn�pqeM}mrXp ¤ Å nZtnZÄM{X|F`+jfh~n:`+jF¶�p¸rqgXn�`>b
{Dk��M|fnZg6¥3l^p�Á Å nZtw}mn�jfh+rX| ¤ i�Ì#�õ�^Ñ���Ò>Ó�pqkmÄ^�£}�`�t�nZgº�&Ì#Õ Ï p¸r�`+jF¶f`�g�¶�{Zn�}m}H�MgXv^{ZnZpqp@¥�Á
P�R���þH@^Q.�BP:O�KURUP-��� KBA3P+ÿMP+A6�U�ÔAZK^WZK���KBLBWDþÔPºO�YNQÔY[OwEHO @oÿo@BYNL @^VHLNPP�Í@-��CBP+W»L[P+Q��BWDþB�J@BG»EHG�P~R
RUEÔPºWDKdWDþÔPJQÔPA��P>GZGZ@^A6�dY[QfWDP+A�@-��WDY[KBQwWDþÔAZKBE��Mþ�KBEHA3VÔYNW��H@-��C�@-�BP>G»K��D<X:-VHY�WAÂi!U�5$'&(W8$J?1N�qQMWZLk�5!��)$j��LP�692*#9�<-\TVÔYNWw@^QÍRz�+���)�|&£ýY��ý%@��-�¸W@�?L�ADKBWDK���KMLb*{�;g�F,VÔYNW��5�ÔKBA�WZþÔPI�/�5�����þH@^QÔQHP+L=�ºP0@-���ÍKMYNQfWZP>R·@S9Ao# �ÜE$'¸O��þH@^QHQÔP+L=� KMAJGDY[O"�HLNY���YNW��-�ÔýJþÔP3�>@��H@
��YNWDY[P>GaþÔP+AZP�ÿo@BA@���Y�WZþÈAZP��f@^A�RTWDKE��P>@MRUP+A@��WZK��qý»A�@^QÍG �
KBQHRÔP+Aq&GQi��9-9" .ÜE$>¸2*@^QHRÈý»A�@^QHG@�
KBQHRUP>A �uWDK-�?�-P>@BRÔP+A&k:�\E �ÜE$'¸2*/�+KBO�OwEÔQHY��>@�WDY[KBQ��C�qQ]G�WDAZP>@^O �+Y��HþÔP+A0O�KURUP-�=� KMA�P+ÿBP>A@�E�ÔAZK^WZK���KBL%WZþÔP�O�@�R�
YNO�EÔO�@oÿ�@^Y[L[@BVÔLNPH�H@-��CMP�W�LNP>Q��^WZþ%�+@BQ6V
P�P�R��ÔL[KBYNWDP>R &(!U�5$ <XQ�gÆV�fWDPS��YNWDþn:
Q-QÆVX�fWZP�H@i�FLNKf@BR;�-������� <�92adVÔY�W8��Y�WZþI:-Q-\�VÔY�W8�H@i�FLNKf@BRD*{�-N'�+KBO��H@^AZY G�KMQ�@BO�KMQ���WDþHPdRUY��
P>ADP>QfW��KBO�O�EÔQÔY��+@�WZYNKMQ,��þH@^QÔQHP+L G�YNQÍRUY��>@�WZP>GRÔY^�¿P+AZP+QfWdGDLNK
�ÍP~G-K-�3WZþÔP#�>@^L���EÔL @�WZP>R�WDþÔAZKBE.�Bþ��ÔEÔW��þH@^A�@-��WDP+AZY GXWZY��>G�&(�%Y��MEÔAZP�FMRC*��>ýJþHP��0RUP+QHK^WDP:WDþÔPºADY G�Y[Q��-Y[Q��HEHP+Q.�+P�K��FWZþÔP�KMEUW@�ÔEÔW3VÔYNW8&£VÔY�W



�H@-��C�@��MYNQ.�*5�+@BL��+EÔL @�WDY[KBQÍG:@�WJG�O#@^L[L[P+A:CMP���LNP>Q��^WZþHG�� KMAw��þH@BQÔQÔP+L G:K-��þÔY��BþÔP>A:VH@^QÍR���Y[RUWDþJ�
ýJþfEÍG��fWDþHP�GDL[K-�
PdK-��WDþÔP3!U�5$ WZþÔAZKBE��Mþ��ÔEUW+��þH@^A�@-��WDP>ADY GXWZY��-Y[G�GDLNY��BþfWZL���þÔY��BþÔP>AaWDþH@BQI� KMA�/�5���q�=NGP�R��ÍPA�;WZP>R;�HWDþÔP�Y[Q��HEHP+Q.�+PwK��%WDþHP#��þH@BQÔQÔP+L»VH@^QHR���Y[RFWZþÇGDY��MQÔY^]C�+@^QfWZL��TRUP�WZP+A@�
O�Y[QÔP~GWZþÔP��ÍP>A � KMADO#@BQ.��P�K��:WZþÔP�CBP���P�R���þÍ@^Q��MPq�ÔAZK^WZK�+KBL¹@^QHRÇK��:WZþÔP#GXWZADP~@^OÞ��Y��ÔþÔP>A��tdVfÿFY[KBEHGDL��-�fWDþÔP0V
K^WDWDL[P+QÔPA��C·Y GaWDþÔP0EHQHRUP+AZL��fY[Q��}��KMO�OwEÔQÔY��+@^WDY[KBQ��¸VÔEHG��
¹ ñº�ºêçs�C�dôFò8��êdô
\ÈPwGDE��
�BP>G�W�WDK�RUY[G6��EÍGDG-ý3AZP+PBL&@^AZYNW���?,@-��þHYNQÔP#��P+CMP��FYNQ.�`N-A���þÔY�WZP���WDEÔAZP>GB&�ý+Lº?,��NG{*� KBAJLNK2�úþÍ@^A�R��a@BADP��?�+KBO��ÔL[P�RUYNW���L[Y��MþfW��ºP>Y��MþMWJ@^EUWZþÔP+QfWZY��>@�WDP~R·G@�FO�O�P+WDAZY��dCBP���P�R���þH@^Q��MP
@^QHR�G�WDAZP>@^Ox��Y��ÔþÔP>A��-WP_`��Y[P+QfWP� AZP�lfEÔP+QfW:AZP+CMP��FYNQ.��&£P�lfEÔY[ÿ�@^L[P+QfW&WDKw@�AZP>G@�FQ.��þÔAZKBQÔY GZ@�WDY[KBQ
K��zWDþHPdG�WDAZP>@^O ��Y��ÔþÔP>A{*&@^QHRËGDþÔKMA�W�CMP���LNY�� P�WZYNO�P~Gw�>@^Q#V
PY[O"�HLNP>O�P>QfWDP>RJ�!P�RFW�WZK�EHGDYNQ.�
G�K
�ÔþÔY GXWZY��>@�WDP~RËP>Q.��A6��UWDY[KBQ·@BL��MKBAZY�WZþÔO#G�L[Y[CBPU�-Y TXQHRH@^LP&(NUWºS.*{�X� KBAJP�RÔ@^O��ÔL[P-�X�
P+A@� KBAZO�P~R��Y�WZþ�WZþÔPJP�R���þH@BQ��BP~R�CBP��-�~WDþHPJý+La?,�/N YNWZGDP+L��¿@BLNL[K2�-GJ� KMA:@L[Y��BþfW��ºP>Y��MþfW¹G�WDAZP>@BO ��Y��ÔþÔP+A��Y�WZþI� P~@BGDYNVÔL[PK� ADPAlfEÔP+QfWJADP>CBP��FY[Q��.�FýJþÔP0G�WDAZP>@^O�+Y��HþÔP+A�@^L[L[K2�-GP� KMAJ@�þÔY��Bþ·WDþÔAZKBE.�Bþ��ÔEÔW
@^QHR�Y[G-VH@BGDY��>@^L[L��#L[Y[O�YNWDP~R�V�#WDþÔPB�+KBO�OwEHQÔY��>@�WZYNKMQS��þH@BQÔQÔP>Lk�

\ÈPdADP��M@^A�R�WDþÔP�ý+Lº?1�/NGa@BGw��L��[��KMADP~G&YNQ·P+OwV
P>RHRUP>R�G �UG�WDP+O�P>QfÿFY[ADKMQÔO�P+QfWZGP��Y�WZþ
@O�H@^ADWDY���EÔL @^A)� K��+EHG:KMQ�WZAZ@BQHG@�ÍKMQHRUP+A@�¸VH@BGDP>R�@����ÔL[Y��+@�WZYNKMQHG:GDE.��þ#@BGP���������qG �UG�WDP+O#G��^VÔEUW
@^L G�K�KBQ�RÔP+ÿFY��+P>GºYNQT@BR�¸þÔK��@BQHR·GDP+QÍG�KMAºQÔP+W��ºKMADCUG��BY[QI��þÔY���þ�@�GDO�@BLNL¿@^AZP>@B� KBAY��A6��UWDK-��BA�@��ÔþÔY��Y��KMO"�
KBQHP+QfWZG¹Y G&K�� WZP+Q�O#@^QHRH@�WDKMA@�
��ýJþÔP���@^AZPaP~G �
P��+Y[@BLNL��wGDEÔYNWDP>R#� KMA�RUP+ÿFY���P~G¹K��
LNY[O�Y�WZP>R�AZP>GDKBEÔA���P~GY��Y�WZþ,QÔK#KBA-KMQÔL��·ÿBP>A@�·LNY[O�Y�WZP>R�O�Y��+ADK��+KBQfWDAZKBL[LNP>AZGJ@oÿ�@^Y[L @^VÔL[P�»·P+ÿBP>Q
O�KMADP�Y[Q�O�KURUP>AZ@^WDP0GDP���EHADYNW��ËG@�+P+QH@BADY[KMG��
�úçB¼�ê*��½¾�Xâ3ö-ë�ð â»êºîÔô

ýJþÔP�@^EUWZþÔKBA�G��aKBEHL[RwLNY[CBPºWDKdWDþH@BQÔC�SFP>VH@BG�WDY @^Q�SfWZ@BY��MP+AY&(Zd@^OwVHEÔA@�Oe-QHYNÿMP+A�G�YNW���K��
ý3P���þ��
QÔKBL[K-�
��*5� KBAaþÔY[GY�+KBQfWDAZYNVHEUWDY[KBQ#WZK�WZþÔPU�HADK-TXP��;WA�f@MG��aP+L[L¿@BG8e-QÔY[ÿBP>AZGDY�W���K-��Z@^O�VÔEÔA6�B� KMA
@^L[LNK2��Y[Q���EHG¹WDK�EHGDPaWDþÔP>YNA�YNQHRÔEHGXWZA@�X�qGXW�@^QHRH@^A�RwG@�fQfWZþÔP>GDY[G �uWDKFKBL���þH@^Y[Q0WZþÔP/NdS�@$6RUP~G�Y��BQJ�
÷ â ¿Zâ»ïÔâ»êç¿â3ô
�s�À� Ï r�`�Á¸`>jfvB�¿¾%Á á Ï n;{DeMgXksrutËkmj·�UnZgXl~`+pqkmlon�{Zv>b0�feBrXk�jMhMÁ�uj.áHÊ�gXv^{+Á
v+x%rX|fn���p¸r-�uj�rXnZgXjf`+rXkmv~jf`>}
�%v>jMx nDgXn�jF{Zn,v>j Ï n;{ZeBgXkmr�tõkmjÀÊ¿nZgXl>`>pqkmlon��%v~b0�MeMrXkmjfh ¤ Ï Ê3���>�>�~�i¥�Áa�»v~}mefb0nT�>Ò>�o�Èv+x
Ý µ � Ï Ám� Ï �BgXk�jMh~nZg��»nZgX}�`>h ¤ �+�~�>�2¥ �

� ��� Ï r�`>jMx[v>g�¶Ô���dÁ áHÊ¿nZgXl>`>pqkmlonº{Zv~b0�MeMrXkmjfhah~v�n�p%rX|Mn:}N`+p¸r&|^efjf¶BgXn;¶dx[n�nZr3Ã:kmrX|�½º¾¿�u�õp¸tBp¸rXn�b0p�Á
Ê¿nZgXl>`>pqkmlon�%v>b0�feBrXk�jMhM�B�¸�»�»�]�%v~b0�MeMrXnZg Ï {Zkmn�jF{Dn ¤ �>�~�>�2¥mÂ�¼f��Ã

� ��� Ï `+gXb�`B� Ï Á �:Ám��Â�nZk�p�� Ï Á µ Ám�+�»jMh~n�}mp��+��Á ÂÀÁ á�½º¾¿�u�Æp¸tBp¸rXn�b0p¿`+jF¶�pqn;{ZeBgXksrut`>jf¶��MgXkml~`>{Dt�kmb��
�M}�k�{�`�rXkmv~jfp�Á
�uj�Þ-`>}mkmp Å k �Är�Á��^n�¶HÁ áBÊ�gXv^{+ÁMv+x
rX|Mn�ÂTv>g Å pq|fv>�wv>j��3gqtM�BrXv~h+g�`>�f|Mk�{º_J`�g�¶BÃ¹`+gXn
`+jF¶-�»bdcUn;¶f¶Bn;¶ Ï tMp¸rXnZb0p
�+�~�~�^�~�%_J� Ï �>�~�~�^Á��»v~}mefb0n3�p�~�>�:v>xfÝ µ � Ï Ám� Ï �MgXkmjfh>nZgq�£�3nZgX}�`+h¤ �+�~�~�i¥mÃ���Ã�¼�Ã�ÅpÂ

� Ãp��ÂTn�kmp�� Ï Á µ Ám� Ï `+gXb�`B� Ï Á �&Á��^½�kmlon�p¸r;��½-Á Ý»Ám�^��jfh>n�}mp��M�dÁ Â Á^á Ï n;{ZeMgXksr�t0`>jf¶0�MgXkml~`>{Dt0`+pq�Un;{DrXp
v+xJ}mv;Ã&�u{Dv~p¸r0g�`~¶Bkmv�x[gXn�Æ^eMn�jF{�tÆkN¶Bn�j�rXksÎU{�`�rXk�v>jÈp¸tBp¸rXn�b0p�ÁÆ��jÆ_aeMrqrXnDg;����Ám��n;¶HÁ á3Ê�gXv^{+Á3v+x
rX|Mn���p¸rº�uj�rXnZgXjf`+rXkmv~jf`>}
�%v~jMx[nZgXn�jf{Zn-v~j Ï n;{ZeMgXksr�t�kmj�Ê¿nZgXl~`+pqkmlon�%v~b0�MeMrXkmjfhB� Ï Ê%� �>�>�~�^Á
�»v~}mefb0nJ�>Ò>�o��v>x�Ý µ � Ï Á�� Ï �BgXkmjfh~nDgq���»nZgX}�`>h ¤ �>�~��Ã�¥:�>�^�D¼B�����

� ����Êz`>`+g;�Ô�ºÁ á»Êz`+p¸ra`+jF¶�x eMrXeBgXn�v>x�{�gqtM�BrXv~h+g�`>�f|Mk�{an�jfh>kmjfn�nZgXkmjMhMÁ3y
eMrXv+gXk�`>}¿`�r:_�ÕJy �%_º�¸Ê Ï
�+�~�~�^� Ï r�`+jMx[v>g�¶�iºjfkmlonZgXpqksr�t��Mi ÏMµ ¤ �>�>�~�2¥



� Å���Ê¿n�}mÐ�} �~ÇMÁm�^Â�v>}�}mkmjfh>nZg;�MyaÁm�BÊz`~`+g;�f�ºÁ ázÝHv;Ã {Zv~p¸r:pqn�{ZeMgXksrut�áB�zÄB�f}mk�{Zksr¹x v+gXb�ef}�`+n�x[v>g:h~nZjBeMp¸�4Ã
|�tB�UnZgXn�}m}mkm�MrXk�{3{DeMgXlon�p�Á+��jDáo���+rX| µ jMj^eF`>}+Â�v+g Å pq|Mv~��v>j Ï n�}mn;{DrXn�¶ µ gXn;`>pÍkmj�3gqtM�BrXv~h+g�`>�f|�t¤ ÏBµ �õ�+�~�>�2¥�� Ï �MgXkmjfh>nZg��3nDgX}N`+h ¤ �>�>�~�i¥

� ���Qr¹`+km}�nDt��^��Ám�^Êz`~`�g;�M�ºÁ^áÍ�sÈ�{Zkmn�j�r&`�gXksrX|fb0nZrXk�{&kmj�ÎfjfksrXn&ÎFn�}�¶0nZÄ^rXn�jMpqk�v>jfp»Ã:kmrX|w`+�f�f}mk�{�`�rXk�v>j
kmj�n�}m}mkm�MrXk�{�{ZeBgXlon�{DgqtB�MrXv>h>g�`+�f|�t�Á%Ç~v>eMgXjF`+}
v+x3�3gqtM�BrXv~}mv~h+t ©�· ¤ �+�~�^��¥

� Ò��0_ºvpÉÔp¸rXn�kmjÍ�3ÇMÁm�ÍÊ�k��M|fnZg;�6ÇBÁ�� Ï km}mlonZgXb�`+jÍ�BÇBÁ _Á á µ y¹½&iUá µ gXkmjfh>�£cf`>pqn;¶Ë�feMcf}mk�{ Å nZt#{DgqtB�M�
rXv>p¸tMp¸rXnZb�Á0�ujgr%ef|M}mnZg;�'ÇBÁ��Ín;¶ÔÁ^á
ÊzgXv^{>Á¿v+x µ }mh~v+gXksrX|fb0k�{ µ eMb�cUnZgJy¹|fn�v+gqt ¤ µ µ y Ï �q�q��¥��
Ê¿v+gqrX}N`+jF¶Ô�:ÕºgXn�h>v~jÍÁ%ÝÍn�{DrXeMgXn µ v>rXn�p�kmj �%v~b0�MeMrXnZg Ï {Zkmn�jF{Dn~� Ï �MgXkmjfh>nZgq�£�3nDgX}N`+hM��r%nZgX}mkmj¤ ��Â�Â~Òi¥���Åo��¼B�>Ò>Ò
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Abstract. A new stream cipher, Grain, is proposed. The design tar-
gets hardware environments where gate count, power consumption and
memory is very limited. It is based on two shift registers and a nonlin-
ear filter function. The cipher has the additional feature that the speed
can be increased at the expense of extra hardware. The key size is 80
bits and no attack faster than exhaustive key search has been identified.
The hardware complexity and throughput compares favourably to other
hardware oriented stream ciphers like E0 and A5/1.

1 Motivation

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g. speed, security and simplicity.
Comparing several ciphers, it is likely that one is faster on a 32 bit processor,
another is faster on an 8 bit processor and yet another one is faster in hardware.
The simplicity of the design is another factor that has to be taken into account,
but while the software implementation can be very simple, the hardware imple-
mentation might be quite complex.

There is a need for cryptographic primitives that have very low hardware
complexity. An RFID tag is a typical example of a product where the amount of
memory and power is very limited. These are microchips capable of transmitting
an identifying sequence upon a request from a reader. Forging an RFID tag can
have devastating consequences if the tag is used e.g. in electronic payments and
hence, there is a need for cryptographic primitives implemented in these tags.
Today, a hardware implementation of e.g. AES on an RFID tag is not feasible
due to the large number of gates needed. Grain is a stream cipher primitive that
is designed to be very easy and small to implement in hardware.

Many stream ciphers are based on linear feedback shift registers (LFSR), not
only for the good statistical properties of the sequences they produce, but also for
the simplicity and speed of their hardware implementation. Several recent LFSR
based stream cipher proposals, see e.g. [5, 6] and their predecessors, are based on
word oriented LFSRs. This allows them to be efficiently implemented in software



but it also allows them to increase the throughput since words instead of bits
are output. In hardware, a word oriented cipher is likely to be more complex
than a bit oriented one. We have addressed this issue by basing our design on
bit oriented shift registers with the extra feature of allowing an increase in speed
at the expense of more hardware. The user can decide the speed of the cipher
depending on the amount of hardware available.

The proposed primitive is a bit oriented synchronous stream cipher. In a
synchronous stream cipher the keystream is generated independently from the
plaintext. The design is based on two shift registers, one with linear feedback
(LFSR) and one with nonlinear feedback (NFSR). The LFSR guarantees a min-
imum period for the keystream and it also provides balancedness in the output.
The NFSR, together with a nonlinear filter introduces nonlinearity to the cipher.
The input to the NFSR is masked with the output of the LFSR so that the state
of the NFSR is balanced. Hence, we use the notation NFSR even though this
is actually a filter. What is known about cycle structures of nonlinear feedback
shift registers cannot immediately be applied here. Both shift registers are 80
bits in size. The key size is 80 bits and the IV size is specified to be 64 bits. The
cipher is designed such that no attack faster than exhaustive key search should
be possible, hence the best attack should require a computational complexity
not significantly lower than 280.

Grain provides a higher security than several other well known ciphers in-
tended to be used in hardware applications. Well known examples of such ciphers
are E0 used in Bluetooth and A5/1 used in GSM. These ciphers, while also hav-
ing a very small hardware implementation, have been proven to be very insecure.
Compared to E0 and A5/1, Grain provides higher security while maintaining a
small hardware complexity.

The paper is organized as follows. Section 2 provides a detailed description
of the design. Section 3 gives the design criterias and the design choices and the
strengths and limitations of the design are presented in Section 4. In Section 5
we consider the hardware implementation of the cipher and in Section 6 we give
the results of our security analysis. Section 7 concludes the paper.

2 Design Specification

This section specifies the details of the design. An overview of the different
blocks used in the cipher can be found in Fig. 1 and the specification will refer
to this figure. The cipher consists of three main building blocks, namely an
LFSR, an NFSR and a filter function. The content of the LFSR is denoted by
si, si+1, . . . , si+79 and the content of the NFSR is denoted by bi, bi+1, . . . , bi+79.
The feedback polynomial of the LFSR, f(x) is a primitive polynomial of degree
80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

To remove any possible ambiguity we also define the update function of the
LFSR as

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si.



The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x17 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x65 + x71 + x80+
+x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71+
+x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71+
+x28x35x43x47x52x59.

Again, to remove any possible ambiguity we also write the update function of
the NFSR. Note that the bit si which is masked with the input is included in
the update function below.

bi+80 = si + bi+63 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21+
+bi+15 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9+
+bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9+
+bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15+
+bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9+
+bi+52bi+45bi+37bi+33bi+28bi+21.

Fig. 1. The cipher.

The contents of the two shift registers represent the state of the cipher. From
this state, 5 variables are taken as input to a boolean function, h(x). This filter
function is chosen to be balanced, correlation immune of the first order and has
algebraic degree 3. The nonlinearity is the highest possible for these functions,
namely 12. The input is taken both from the LFSR and from the NFSR. The
function is defined as

h(x) = x1+x4+x0x3+x2x3+x3x4+x0x1x2+x0x2x3+x0x2x4+x1x2x4+x2x3x4

where the variables x0, x1, x2, x3 and x4 corresponds to the tap positions si+3,
si+25, si+46, si+64 and bi+63 respectively. The output of the filter function is
masked with the bit bi from the NFSR to produce the keystream.



2.1 Key Initialization

Before any keystream is generated the cipher must be initialized with the key
and the IV. Let the bits of the key, k, be denoted ki, 0 ≤ i ≤ 79 and the bits
of the IV be denoted IVi, 0 ≤ i ≤ 63. The initialization of the key is done as
follows. First load the NFSR with the key bits, bi = ki, 0 ≤ i ≤ 79, then load
the first 64 bits of the LFSR with the IV, si = IVi, 0 ≤ i ≤ 63. The remaining
bits of the LFSR are filled with ones, si = 1, 64 ≤ i ≤ 79. Because of this
the LFSR cannot be initialized to the all zero state. Then the cipher is clocked
160 times without producing any running key. Instead the output of the filter
function, h(x), is fed back and xored with the input, both to the LFSR and to
the NFSR, see Fig. 2.

Fig. 2. The key initialisation.

3 Design Criteria

The design of the cipher is chosen to be as simple as possible for a hardware
implementation. The security requirements correspond to a computational com-
plexity of 280, equivalent to an exhaustive key search. To meet this requirement
it is necessary to build the cipher with a memory of 160 bits. Implementing
160 memory bits in hardware can be seen a lower bound for the complexity. To
develop a small hardware design we have to focus on minimizing the functions
that are used together with this memory. The functions used need to be small
in order to save gates but still large enough to provide high security. It is well
known that an LFSR with primitive feedback polynomial of degree d produces
an output with period 2d − 1. The LFSR in the cipher is of size 80 and since the
feedback polynomial is primitive it guarantees that the period is at least 280−1.
Because of the NFSR and the fact that the input to this is masked with the
output of the LFSR the exact period will depend on the key and the IV used.
The input to the NFSR is masked with the output of the LFSR in order to make



sure that the NFSR state is balanced. The nonlinear feedback is also balanced
since the term x80 only appears linearily.

The filter function is quite small, only 5 variables and nonlinearity 12. How-
ever, this is compensated by the fact that one of the inputs is from the NFSR.
The input bit from the NFSR will depend nonlinearily on other bits in the state,
both from the LFSR and from the NFSR.

In the key initialization phase the goal is to scramble the contents of the
shift registers before the running key is generated. The number of clockings is a
tradeoff between security and speed. If the cipher is to be reinitialized often with
a new IV, then the efficiency of the initialization is a possible bottleneck. Before
initialization the LFSR contains the IV and 16 ones. For initialization with two
different IVs, differing by only one bit, the probability that a shift register bit
is the same for both initializations should be close to 0.5. Simulations show that
this is achieved after 160 clockings. See section 6.4 for further discussion about
this. Finally, no hidden weaknesses have been inserted by the designers.

3.1 Throughput Rate

Both shift registers are regularly clocked so the cipher will output 1 bit/clock. It
is possible to increase the speed of the cipher at the expense of more hardware.
This can very easily be done by just implementing the feedback functions, f(x)
and g(x) and the filter function, h(x) several times. In order to simplify this
implementation, the last 15 bits of the shift registers, si, 65 ≤ i ≤ 79 and
bi, 65 ≤ i ≤ 79 are not used in the feedback functions or in the input to the
filter function. This allows the speed to be easily multipled by up to 16 if a
sufficient amount of hardware is available. An example of the implementation
when the speed is doubled can be seen in Fig. 3. Naturally, the shift registers also
need to be implemented such that each bit is shifted t steps instead of one when
the speed is increased by a factor t. By increasing the speed by a factor 16, the
cipher outputs 16 bits/clock. Since, in the key initialization, the cipher is clocked
160 times, the possibilities to increase the speed is limited to factors ≤ 16 that
are divisible by 160. The number of clockings used in the key initialization is
then 160/t. Since the filter and feedback functions are small, it is quite feasible
to increase the throughput in this way.

4 Strengths and Limitations

The design of a cipher needs to be focused on some specific properties. It is not
possible to have a design that is perfect for all purposes i.e., processors of all word
lengths, all hardware applications, all memory constraints etc. Grain is designed
to be very small in hardware, using as few gates as possible while maintaining
high security. The cipher is intended to be used in environments where gate
count, power consumption and memory needs to be very small. While Grain
is still possible to use in general application software, there are several ciphers
that are designed with software efficiency in mind and thus are more appropriate



Fig. 3. The cipher when the speed is doubled.

when high speed in software is required. Because of this it does not make sense
to compare the software performance of Grain to other ciphers. To emphasize
the focus on hardware, no software speed measurements have been conducted.

The basic implementation has rate 1 bit/clock cycle. The speed of a word
oriented cipher is typically higher since the rate is then 1 word/clock. Grain is
bit oriented due to the high focus on small hardware complexity and this has
been compensated by the possibility to increase the speed at the cost of more
hardware. This allows a vendor to choose how fast the cipher should be according
to the amount of hardware available in the product produced.

5 Hardware Complexity

To get some practical indications on complexity and other important features of
a possible hardware implementation of the stream cipher, we performed a design
based on standard FPGA architectures.

Starting with Fig. 1 (normal operating mode) and Fig. 2 (key initialisation)
we added a third mode (loading key bits into NFSR and IV into LFSR, as de-
scribed in Sect. 2.1). This whole circuit was described in VHDL (about 300 lines
of code) depending on the parameter t as defined in Sect. 3.1. The ALTERA
MAX 3000A family was choosen since we have most experience with the associ-
ated design equipment and it is seen as adequate for this purpose. MAX 3000A is
a low end product using flash Memory as storage for the programming data; i.e.
these data are persistent, and no loading procedure is necessary as with RAM-
based FPGAs. The EPM3256 is the smallest chip of this family which will meet
our requirements (more than 160 flipflops and some combinatorial logic). Using
the ALTERA Quartus design tool, we carried out logical synthesis, place/route



and post-layout timing analysis. We found that t ≤ 4 fits into the EPM3256,
leading to a usage of about 90% of the 256 available macrocells. The maximum
clock frequency is in the range of 35–50 MHz, depending on the operating mode
and the output interface. Also t = 8 fits into this chip, but the maximum clock
frequency was limited to 30 MHz. The number of output bits per second is t
times clock frequency.

In order to make a fair comparison between different ciphers, the imple-
mentations has to be tested on the same FPGA. To highlight the performance
difference between different FPGAs we have simulated our design on two ad-
ditional FPGA families, namely the ALTERA MAX II and ALTERA Cyclone.
These two allowed the cipher to be clocked at higher speed and it also allowed
an implementation of the cipher when the speed was increased 16 times the
original speed, i.e. when t = 16. It should be mentioned that there are other
manufacturers of FPGAs (e.g. Actel, Xilinx), which may offer devices that will
meet all requirements too at lower prices. Some products are including security
mechanisms, prohibiting reverse engineering of a programmed chip.

The gate count for a function varies depending on the complexity and func-
tionality. The numbers are no natural constants and will depend on the imple-
mentation in an actual chip. We have chosen a gate count of 8 for a flip flop.
This figure ensures enough functionality for our application. Table 1 lists the
factors chosen in our implementation.

Table 1. The gate count used for different functions.

Function Gate Count

D flip flop 8

NAND2 1

NAND3 1.5

NAND4 2

NAND5 2.5

NAND6 3

XOR2 2.5

MUX3 5

In our design we have calculated the gate count for t = 1, 2, 4, 8 and 16. Ta-
ble 2 shows the gate count and the corresponding throughput for the 3 different
FPGA/CPLDs. More details regarding the figures in the hardware implementa-
tion can be found in Appendix A.
This gate count can be compared to other hardware oriented stream ciphers,
e.g. E0 used in Bluetooth and A5/1 used in GSM. Using figures taken from [2],
the gate count for E0 is about the same as for Grain. A5/1 has a gate count
of approximately half. In all 3 ciphers, most of the gates are used for memory
implementation. Grain, E0 and A5/1 use 160, 128 and 64 bits memory respec-
tively. Moreover, the throughput of Grain also compares favourably to E0 and



Table 2. The gate count and throughput of Grain for t = 1, 2, 4, 8 and 16.

t Gate Count
Throughput

MAX 3000A MAX II Cyclone

1 1435 49 Mbit/s 200 Mbit/s 282 Mbit/s

2 1607 98.4 Mbit/s 422 Mbit/s 576 Mbit/s

4 1950 196 Mbit/s 632 Mbit/s 872 Mbit/s

8 2636 240 Mbit/s 1184 Mbit/s 1736 Mbit/s

16 4008 — 2128 Mbit/s 3136 Mbit/s

A5/1, mostly due to the fact that it can be increased efficiently with just a small
increase in gate count. Both E0 and A5/1 have been proven to be very insecure.
In [8], an attack against E0 using 235 frames and computational complexity 240

was shown. This attack is on the borderline of being practical. Also, several at-
tacks against A5/1 have been shown, see e.g. [1, 4, 9]. Grain has been designed
to provide much better security than both E0 and A5/1 while maintaining a low
gate count.

6 Cryptanalysis

In this section we consider some general attacks on stream ciphers and investi-
gate to which extent they can be applied to Grain. Resistance against all known
cryptanalytic attacks is the most important property of a new cipher. There
should be no attack faster than exhaustive key search. Initial cryptanalytic at-
tempts against the cipher show the following.

6.1 Correlations

Due to the statistical properties of maximum-length LFSR sequences, the bits
in the LFSR are (almost) exactly balanced. This may not be the case for a
NFSR when it is driven autonomously. However, as the feedback g(x) is xored
with a LFSR-state, the bits in the NFSR are balanced. Moreover, recall that g
is a balanced function. Therefore, the bits in the NFSR may be assumed to be
uncorrelated to the LFSR bits.

The function h is chosen to be correlation immune of first order. This does
not preclude that there are correlations of the output of h(x) to sums of inputs.
As one input comes from the NFSR and as h(x) is xored with a state bit of the
NFSR, correlations of the output of the generator to sums of LFSR-bits will be
so small that they will not be exploitable by (fast) correlation attacks.

6.2 Algebraic Attack

A filter generator alone with output function h(x) of degree only three would
be very vulnerable to algebraic attacks. On the other hand, algebraic attacks



will not work for solving for the initial 160-bit state of the full generator, as the
update function of the NFSR is nonlinear, and the later state bits of the NFSR
as a function of the inital state bits will have varying but large algebraic degree.
Using key initialization, it may be possible to express the output of the generator
as a function of state bits of the LFSR alone. As the filter function h(x) has one
input coming from the NFSR, and h(x) is xored with a NFSR-state bit, the
algebraic degrees of the output bits when expressed as a function of LFSR-bits,
are large in general, and varying in time. This will defeat algebraic attacks.

6.3 Time/Memory/Data Tradeoff Attack

The cost of time/memory/data tradeoff attacks on stream ciphers is O(2n/2),
where n is the number of inner states of the stream cipher, [3]. To obey the mar-
gins set by this attack, n = 160 has been chosen. It is known that stream ciphers
with low sampling resistance have tradeoff attacks with fewer table lookups and
a wider choice of parameters, [3]. The sampling resistance of h(x) is reasonable:
This function does not become linear in the remaining variables by fixing less
than 3 of its 5 variables. Similarly, the variables occuring in monomials of g(x)
are sufficiently disjoint. Hence the resulting sampling resistance is large, and
thus time/memory/data tradeoff attacks are expected to have complexity not
lower than O(280).

6.4 Chosen-IV Attack

A necessary condition for defeating differential-like or statistical chosen-IV at-
tacks is that the initial states for any two chosen IV’s (or sets of IV’s) are
algebraically and statistically unrelated. The number of cycles in key initial-
ization has been chosen so that the Hamming weight of the differences in the
full initial 160-bit state for two IV’s after initialization is close to random. This
should prevent chosen-IV attacks.

It may be tempting to improve the efficiency of the key initialization by
just decreasing the number of initial clockings. Indeed, after only 80 clocks,
all bits in the state will depend on both the key and the IV. However, in a
chosen-IV attack it is possible to reinitialize the cipher with the same key but
with an IV that differs in only one position from the previous IV. Consider the
case when the number of initial clockings is 80 and the last bit of the IV is
flipped i.e., s63 is flipped. This is the event that occurs if the IV is chosen as
a sequence number. Looking at the difference of the states after initialization
it is clear that several positions will be predictable. The bit s63 is not used
in the feedback or in the filter function, hence, the first register update will
be the same in both cases. Consequently, the bit s0 will be the same in both
initializations. In the next update, the flipped bit will be in position s62. This
position is used in the linear feedback of the LFSR, and consequently the bit s1

will always be different for the two initializations. Similar arguments can be used
to show that the difference in the state will be deterministic in more than half
of the 160 state bits. This deterministic difference in the state can be exploited



in a distinguishing attack. Let x = x0, x1, x2, x3, x4 be the input variables to
h(x) after the first initialization and let x∆ = x0, x1, x2, x3, x4 be the input
variables to h(x) after the second initialization. Now, compute the distribution
of P (x, x∆). If this distribution is biased, it is likely that the distribution of the
difference in the first output bit,

P (h(x) ⊕ h(x∆)),

is biased. Assume that

P (h(x) ⊕ h(x∆) = 0) = 1/2 + ε,

then the number of initializations we need will be in the order of 1/ε2. This attack
can be optimized by calculating which output bit will give the highest bias since
it is not necessarily the bits in the registers corresponding to the input bits
of h(x) that have deterministic difference after the initializations. This attack
shows that it is preferred that the probability that any state bit is the same after
initialization with two different IVs should be close to 0.5. As with the case of
80 initialization clocks, it is easy to show that after 96, 112 and 128 there are
also state bits that will always be the same or that will always differ.

6.5 Fault Attack

Amongst the strongest attacks conceivable on any cipher, are fault attacks. Fault
attacks against stream ciphers have been initiated in [7], and have shown to be
efficient against many known constructions of stream ciphers. This suggests that
it is hard to completely defeat fault attacks on stream ciphers. In the scenario
in [7] it is assumed that the attacker can apply some bit flipping faults to one
of the two feedback registers at his will. However he has only partial control
over their number, location, and exact timing, and similarly on what concerns
his knowledge. A stronger assumption one can make, is that he is able to flip a
single bit (at a time instance, and thus at a location, he does not know exactly).
In addition, he can reset the device to its original state and then apply another
randomly chosen fault to the device. We adapt the methods in [7] to the present
cipher. Thereby, we make the strongest possible assumption (which may not be
realistic) that an attacker can induce a single bit fault in the LFSR, and that he
is somehow able to determine the exact position of the fault. The aim is to study
input-output properties for h(x), and to derive information on the 5 inputs, out
of known input-output pairs (similar as for S-boxes in differential cryptanalysis
of DES). As long as the difference induced by the fault in the LFSR does not
propagate to position bi+63, the difference observed in the output of the cipher is
coming from inputs of h(x) from the LFSR alone. If an attacker is able to reset
the device and to induce a single bit fault many times and at different positions
that he can correctly guess from the output difference, we cannot preclude that
he will get information about a subset of the state bits in the LFSR. Such
an attack seems more difficult under the (more realistic) assumption that the
fault induced affects several state bits at (partially) unknown positions, since



in this case it is more difficult to determine the induced difference from output
differences.

Likewise, one can consider faults induced in the NFSR alone. These faults do
not influence the contents of the LFSR. However, faults in the NFSR propop-
agate nonlinearly and their evolution will be harder to predict. Thus, a fault
attack on the NFSR seems more difficult.

7 Conclusion

A new stream cipher, Grain, has been introduced. It is designed with small hard-
ware implementation in mind. A complete description of the algorithm as well
as a security analysis based on known attacks have been given. The construction
is based on two shift registers, one with linear feedback and one with nonlinear
feedback, and a nonlinear filter function. The key size is 80 bits and no attack
with complexity better than exhaustive key search has been identified.

Grain is a bit oriented stream cipher producing 1 bit/clock in its simplest
implementation. However, as an important feature, it is very easy to increase
the rate up to 16 bits/clock if some additional hardware is used.
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A Hardware Figures

In Table 3 we summarize hardware figures when the implementation was simu-
lated on three different FPGAs. A fair comparison between different implemen-
tations and different ciphers requires that the same FPGA family is targeted.

Table 3. Hardware related figures for Grain.

Supplier ALTERA ALTERA ALTERA
FPGA/CPLD MAX 3000A MAX II Cyclone
Type EPM3256ATC144-7 EPM570T100C3 EP1C3T100C6
Total LABs [LE] [256] 57 291

t=1

Gate Count 1435 1435 1435
Max. Clock 49.2 MHz 200 MHz 282 MHz
%LAB [LE] usage [68%] 38% 8%
Power drain 700 mW 365 mW 835 mW
Throughput 49 Mbit/s 200 Mbit/s 282 Mbit/s
Efficiency 70 Mbit/Joule 0.55 Gbit/Joule 0.38 Gbit/Joule

t=2

Gate Count 1607 1607 1607
Max. Clock 49.2 MHz 211 MHz 288 MHz
%LAB [LE] usage [75%] 42% 10%
Power drain 750 mW 395 mW 855 mW
Throughput 98.4 Mbit/s 422 Mbit/s 576 Mbit/s
Efficiency 131 Mbit/Joule 1.07 Gbit/Joule 0.67 Gbit/Joule

t=4

Gate Count 1950 1950 1950
Max. Clock 49 MHz 158 MHz 218 MHz
%LAB [LE] usage [89%] 49% 12%
Power drain 835 mW 330 mW 660 mW
Throughput 196 Mbit/s 632 Mbit/s 872 Mbit/s
Efficiency 235 Mbit/Joule 1.95 Gbit/Joule 1.32 Gbit/Joule

t=8

Gate Count 2636 2636 2636
Max. Clock 30 MHz 148 MHz 217 MHz
%LAB [LE] usage [98%] 61% 11%
Power drain 775 mW 350 mW 665 mW
Throughput 240 Mbit/s 1184 Mbit/s 1736 Mbit/s
Efficiency 310 Mbit/Joule 3.38 Gbit/Joule 2.6 Gbit/Joule

t=16

Gate Count 4008 4008
Max. Clock 133 MHz 196 MHz
%LAB [LE] usage 85% 19%
Power drain 420 mW 625 mW
Throughput 2128 Mbit/s 3136 Mbit/s
Efficiency 5.06 Gbit/Joule 5.18 Gbit/Joule
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Abstract. Most present symmetric encryption algorithms result from a
tradeoff between implementation cost and resulting performances. In ad-
dition, they generally aim to be implemented efficiently on a large variety
of platforms. In this paper, we take an opposite approach and consider a
context where we have very limited processing resources and throughput
requirements. For this purpose, we propose low-cost encryption routines
(i.e. with small code size and memory) targeted for processors with a
limited instruction set (i.e. AND, OR, XOR gates, word rotation and mod-
ular addition). The proposed design is parametric in the text, key and
processor size, provably secure against linear/differential cryptanalysis,
allows efficient combination of encryption/decryption and “on-the-fly”
key derivation. Target applications for such routines include any context
requiring low-cost encryption and/or authentication.

1 Introduction

Resource constrained encryption does not have a long history in symmetric cryp-
tography. Noticeable examples of such ciphers are the Tiny Encryption Algo-
rithm TEA [32] or Yuval’s proposal [33]. However, both of them are relatively old
and do not provide provable security against attacks such as linear and differen-
tial cryptanalysis. Present block ciphers, like the Advanced Encryption Standard
Rijndael [17, 18] rather focus on finding a good tradeoff between cost, security
and performances. While this approach is generally the most convenient, there
exist contexts where more specialized ciphers are useful. As a motivating exam-
ple, ICEBERG [30] is targeted for hardware implementations and shows significant
efficiency improvements on these platforms compared to other algorithms.

Embedded applications such as building infrastructures present a significant op-
portunity and challenge for such new cryptosystems. Introducing programma-
bility into the configuration of lights and switches, thermostats and air handlers,
promises to improve the cost of construction, flexibility in occupancy, and energy



efficiency of buildings. But meeting this demand on a scale compatible with the
economics of the trillion-dollar construction industry is going to require secure
lightweight implementations of peer-to-peer networks in resource-constrained
systems. The Internet-0 approach to end-to-end modulation for interdevice in-
ternetworking is typically appropriate in this limit [20]. SEAn,b constitutes a
suitable solution for low-cost encryption/authentication within such networks.
RFID’s or any power/space-limited applications are similarly targeted.

In this paper, we consequently consider a general context where we have very
limited processing resources (e.g. a small processor) and throughput require-
ments. It yields design criteria such as: low memory requirements, small code
size, limited instruction set. In addition, we propose the flexibility as another
unusual design principle. SEAn,b is parametric in the text, key and processor
size. Such an approach was motivated by the fact that many algorithms behave
differently on different platforms (e.g. 8-bit or 32-bit processors). In opposition,
SEAn,b allows to obtain a small encryption routine targeted to any given pro-
cessor, the security of the cipher being adapted in function of its key size.

Beyond these general guidelines, alternative features were wanted, including the
efficient combination of encryption and decryption or the ability to derive keys
“on the fly”. Both of them result in an improved efficiency and are particularly
relevant in contexts where the same constrained device has to perform encryption
and decryption operations (e.g. authentication). As a final bonus, the simplicity
of SEAn,b makes its implementation in assembly code straightforward.

2 Specifications

2.1 Parameters and definitions

SEAn,b operates on various text, key and word sizes. It is based on a Feistel
structure with a variable number of rounds, and is defined with respect to the
following parameters:

– n: plaintext size, key size.
– b: processor (or word) size.
– nb = n

2b : number of words per Feistel branch.
– nr: number of block cipher rounds.

As only constraint, it is required that n is a multiple of 6b. For example, using
an 8-bit processor, we can derive 48, 96, 144, . . . -bit block ciphers, respectively
denoted as SEA48,8, SEA96,8, SEA144,8, ...

Let x be a n
2 -bit vector. In the following, we will consider two representations:

– Bit representation: xb = x(n
2 − 1) x(n

2 − 2) . . . , x(2) x(1) x(0).
– Word representation: xW = xnb−1 xnb−2 . . . x2 x1 x0.



2.2 Basic operations

Due to its simplicity constraints, SEAn,b is based on a limited number of elemen-
tary operations (selected for their availability in any processing device) denoted
as follows: (1) bitwise XOR ⊕, (2) substitution box S, (3) word (left) rotation
R and inverse word rotation R−1, (4) bit rotation r, (5) addition mod 2b ¢.
These operations are formally defined as follows:

1. Bitwise XOR ⊕: The bitwise XOR is defined on n
2 -bit vectors:

⊕ : Z
n
2
2 × Z

n
2
2 → Z

n
2
2 : x, y → z = x⊕ y ⇔ z(i) = x(i)⊕ y(i), 0 ≤ i ≤ n

2
− 1

2. Substitution box S: SEAn,b uses the following 3-bit substitution table:

ST := {0, 5, 6, 7, 4, 3, 1, 2},

in C-like notation. For efficiency purposes, it is applied bitwise to any set of three
words of data using the following recursive definition:

S : Znb

2b → Znb

2b : x → x = S(x) ⇔

x3i = (x3i+2 ∧ x3i+1)⊕ x3i,
x3i+1 = (x3i+2 ∧ x3i)⊕ x3i+1,
x3i+2 = (x3i ∨ x3i+1)⊕ x3i+2, 0 ≤ i ≤ nb

3 − 1,

where ∧ and ∨ respectively represent the bitwise AND and OR.

3. Word rotation R: The word rotation is defined on nb-word vectors:

R : Znb

2b → Znb

2b : x → y = R(x) ⇔ yi+1 = xi, 0 ≤ i ≤ nb − 2,
y0 = xnb−1

4. Bit rotation r: The bit rotation is defined on nb-word vectors:

r : Znb

2b → Znb

2b : x → y = r(x) ⇔ y3i = x3i ≫ 1,
y3i+1 = x3i+1,
y3i+2 = x3i+2 ≪ 1, 0 ≤ i ≤ nb

3 − 1,

where ≫ and ≪ represent the cyclic right and left shifts inside a word.

5. Addition mod2b ¢: The mod 2b addition is defined on nb-word vectors:

¢ : Znb

2b × Znb

2b → Znb

2b : x, y → z = x ¢ y ⇔ zi = xi ¢ yi, 0 ≤ i ≤ nb − 1
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Fig. 1. Encrypt/decrypt round and key round.

2.3 The round and key round

Based on the previous definitions, the encrypt round FE , decrypt round FD

and key round FK are pictured in Figure 1 and defined as the functions F :
Z2

2n/2 × Z2n/2 → Z2
2n/2 such that:

[Li+1, Ri+1] = FE(Li, Ri, Ki) ⇔ Ri+1 = R(Li)⊕ r
(
S(Ri ¢ Ki)

)
Li+1 = Ri

[Li+1, Ri+1] = FD(Li, Ri,Ki) ⇔ Ri+1 = R−1
(
Li ⊕ r

(
S(Ri ¢ Ki)

))

Li+1 = Ri

[KLi+1,KRi+1] = FK(KLi,KRi, Ci) ⇔ KRi+1 = KLi ⊕R
(
r
(
S(KRi ¢ Ci)

))

KLi+1 = KRi

2.4 The complete cipher

The cipher iterates an odd number nr of rounds. The following pseudo-C code
encrypts a plaintext P under a key K and produces a ciphertext C. P,C and
K have a parametric bit size n. The operations within the cipher are performed
considering parametric b-bit words.

C=SEAn,b(P, K)
{

% initialization:
L0&R0 = P ;
KL0&KR0 = K;

% key scheduling:
for i in 1 to bnr

2 c
[KLi,KRi] = FK(KLi−1,KRi−1, C(i));

switch KLbnr
2 c, KRbnr

2 c;
for i in dnr

2 e to nr − 1
[KLi,KRi] = FK(KLi−1,KRi−1, C(r − i));



% encryption:
for i in 1 to dnr

2 e
[Li,Ri] = FE(Li−1,Ri−1,KRi−1);

for i in dnr

2 e+ 1 to nr

[Li,Ri] = FE(Li−1,Ri−1,KLi−1);
% final:

C = Rnr&Lnr ;
switch KLnr−1, KRnr−1;

},
where & is the concatenation operator, KRbnr

2 c is taken before the switch and
C(i) is a nb-word vector of which all the words have value 0 excepted the LSW
that equals i. Decryption is exactly the same, using the decrypt round FD.

3 Security analysis

3.1 Design properties of the components

Substitution box S: The substitution box was searched exhaustively in order
to meet the following security and efficiency criteria:

– λ-parameter1: 1/2.
– δ-parameter2: 1/4.
– Maximum nonlinear order, namely 2.
– Recursive definition.
– Minimum number of instructions.

Remark that, if 3-operand instructions are available, the recursive definition
allows to perform the substitution box in 2 operations per word of data. As a
comparison, the 3 × 3 bitwise substitution box used in 3-WAY [15] requires 3.
The counterpart of this efficiency is the presence of two fixed points in the table.

Bit and word rotations r and R: The cyclic rotations were defined in order
to provide predictable low-cost diffusion within the cipher, when combined with
the bitslice substitution box. It is illustrated in Figure 2 for a single substitution
box scheme with parameters n = 48, b = 8, nb = 3.

Looking at the figure, it can be seen that SEAn,b divides its data in 2nb

3 blocks
of 3 words. The substitution box is applied in parallel to these blocks. Therefore,
the diffusion process (starting with one single active bit in the left branch) is
divided into two steps3:
1 We define the bias of a linear approximation that holds with probability p as ε =
|p − 1/2|. The λ-parameter of a substitution box is equal to 2 times the bias of its
best linear approximation.

2 The δ-parameter equals the probability of the best differential approximation.
3 For simplicity purposes, we don’t consider the additional diffusion provided by the

carry propagation in the mod 2b key addition in this discussion.
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Fig. 2. Diffusion process: grey boxes represent active bits.

– During an initialization step, the single active bit has to be propagated to
all the words of the cipher (e.g. to our six words in Figure 2).

– During the second step, the diffusion has to be completed within each block.

The first phase is obtained by the combination of the word rotation R (which
is the only transform to provide inter-word diffusion) with the substitution box.
It requires at most nb rounds to be completed (in our example, nb = 3 which
yields 3 rounds). Once every word has at least one active bit, the combination of
r and S yields six more active bits per block in each round. Therefore, finishing
the diffusion of all the blocks requires at most bb/2c rounds. Combining these
observations, the diffusion is complete after nb + bb/2c rounds.



Addition mod 2b ¢: Using a mod 2b key addition in place of a bitwise XOR
was motivated by different reasons: (1) improvement of the diffusion process, (2)
improvement of the non-linearity, (3) same cost/speed as the bitwise XOR in
most processors, (4) necessity to avoid structural attacks (see next section).

Overall structure: The overall structure of the cipher follows the Feistel
strategy. However, a few points are specific to SEAn,b, namely the key schedule
and the position of R, R−1 in the encrypt/decrypt rounds.

The key schedule is designed such that the master key is encrypted during half
the rounds and decrypted during the other half. It allows to obtain a particular
structure of the sequence of round keys such that the key expansion is exactly
the same in encryption and decryption. Namely, we have:

K0,K1,K2, . . . , Kb r
2 c,Kb r

2 c−1, . . . , K2,K1,K0

As a consequence of this structure, the encryption/decryption rounds cannot
keep the traditional Feistel structure: it would result in having identical encryp-
tion and decryption functions. This is the reason of moving the word rotation
to the left branch of the Feistel round.

3.2 Resistance against known attacks

Linear and differential cryptanalysis. From the properties of the substi-
tution box, we can compute bounds for the best linear and differential charac-
teristics through the cipher. We use the following lemma [29]:

Lemma 1. Let f be the bijective nonlinear function of a 3-round Feistel cipher.
Assuming that the linear parameter of f is smaller than λ and its differential pa-
rameter is smaller than δ, then the linear, differential parameters of the 3-round
cipher ∆, Λ are respectively smaller than λ2, δ2.

For a n-bit block cipher, it is required that ∆ < 2−n in order to have resistance
against differential cryptanalysis [4]. As our nonlinear function S has parameter
δ = 2−2, it is required that:

(
2−2

)2nr/3
< 2−n

Similarly, for resistance against linear cryptanalysis [28], it is required that Λ <
2−

n
2 . As our nonlinear function S has parameter λ = 2−1, it yields:

(
2−1

)2nr/3
< 2−

n
2

In both cases, the required number of rounds is: nr ≥ 3n/4.



Extensions of linear and differential cryptanalysis. Classical extensions
of linear and differential cryptanalysis are non-linear approximations of outer
rounds [26], bi-linear cryptanalysis [14], differential-linear cryptanalysis [27],
multiple linear cryptanalysis [22, 10], boomerang [31] and rectangle [8] attacks,...
However these extensions usually imply only a small improvement compared to
the basic attacks. As a matter of fact, non-linear approximations of outer rounds
allow to improve the bias of one or two rounds only. Regarding bi-linear crypt-
analysis, we quote the author of [14]: For ciphers similar to DES, based on small
substitution boxes, we claim that bi-linear cryptanalysis is very closely related to
LC, and we do not expect to find a bi-linear attack much faster than by LC. It is
difficult to evaluate the efficiency of multiple linear cryptanalysis, but it seems
more promising for big substitution boxes (as mentioned in [22]). Moreover the
improvement on classical cryptanalysis obtained in [10] for the case of DES
(which shares with SEAn,b a Feistel structure and a poor diffusion) is limited.
Finally, the complexity of differential-linear cryptanalysis and of the boomerang
attack and its variants is inherently greater than the one of the basic attacks.
As an example, the boomerang (or rectangle) attack allows us to use two short
differentials instead of a long one, but using a long differential with probability
pq is in general highly preferable to applying a boomerang attack with two short
differentials of probability p and q. Therefore although these attacks can perform
slightly better in specific cases, the expected improvement is never outstanding.
The conclusion is that these extensions actually deserve to be considered in the
estimation of the number of rounds necessary to achieve security, but that a
reasonable multiplicative factor should be enough to take them into account.

A dedicated attack against a modified version. For x ∈ Znb

2b , we denote
by x ≪ a the left rotation by a bits of each of the nb words of x. The non-linear
and diffusion layers have the following properties:

– S(x ≪ a) = S(x) ≪ a
– r(x ≪ a) = r(x) ≪ a
– R(x ≪ a) = R(x) ≪ a

Consider a modified version of our cipher where key addition is performed using
⊕ rather than modular addition. We denote it by ⊕-SEAn,b. As a consequence
of the previous observations, the modified round F ′E has the following property:

Property 1. Let [L1, R1] and [L2, R2] be such that

[L1, R1]⊕ [L2, R2] = ∆1

and F ′E([L1, R1],K)⊕ F ′E([L2, R2],K) = ∆2,

for a given round key K. Then if we define [L∗1, R
∗
1] := [L1, R1] ≪ a and

[L∗2, R
∗
2] := [L2, R2] ≪ a, for a given a, we have:

[L∗1, R
∗
1]⊕ [L∗2, R

∗
2] = ∆1 ≪ a

and F ′E([L∗1, R
∗
1],K)⊕ F ′E([L∗2, R

∗
2],K) = ∆2 ≪ a



This property is iterative, in the sense that it also holds for the composition of
several rounds. It is immediate to deduce from it a distinguisher on the modified
cipher, which requires 4 chosen encryption queries.

In SEAn,b, the key addition is performed word-wise mod 2b. As the property
(∆ ≪ a) ¢ K = (∆ ¢ K) ≪ a is prevented by certain carry propagations, it
only holds with a probability p, depending on the word size b. In the worst case,
b = 1 and we have p = 1 (i.e. ⊕ and ¢ are equivalent). For larger b’s, we have:

b 1 2 3 4 5 6 7 8
p 1 0.625 0.4375 0.3047 0.2129 0.1489 0.1042 0.0730

Of course, these value are averaged for all possible keys and certain keys (e.g.
“all zeroes”) yield no carry propagation at all. However, the design properties
of the key schedule prevent SEAn,b from having such weak keys. It avoids this
structural distinguisher to be propagated through more than a few rounds.

Square attacks. We explored square attacks [16] on SEA48,8. More precisely,
we considered all possible sets of inputs to one branch of the Feistel structure,
where the input to some of the substitution boxes is active (i.e. takes all possible
input values the same number of times), and the input to the other substitution
boxes is constant. The other branch is also constant. Therefore the number of
plaintexts considered goes from 23 (when the input to only one substitution
box is active) to 221 (when the input to 7 substitution boxes is active). Our
experiments showed that square attacks do not allow to pass through more
rounds than the diffusion pattern illustrated in Figure 2. It is expected that
it remains the same when different parameters n and b are considered, which
implies that nb + bb/2c rounds are enough to prevent square attacks. Note that
although our observations also hold for ⊕-SEAn,b, the use of addition mod 2b

provides better resistance against square attacks.

Truncated and impossible differentials. As for square attacks, the diffusion
analysis illustrated in Figure 2 provides an estimation of the number of rounds
required to prevent truncated differential attacks [25]. Impossible differentials
[7] are usually built by concatenating two incompatible truncated differentials.
As a consequence, we estimate the number of rounds necessary to prevent the
construction of an impossible differential distinguisher as 2 · (nb + bb/2c).

Interpolation attacks. The interpolation attack [21] is possible when the
whole cipher can be written as a relatively simple algebraic expression. It re-
quires the substitution box to have a compact expression, and the diffusion layer
to permit the composition of these expressions. In the case of SEAn,b, there is a
priori no such expression, and the bitwise diffusion would make the combination
of algebraic expressions difficult anyway.



Slide attacks. The sequence of round keys of SEAn,b is the same as the one
of ICEBERG. Therefore the analysis done in [30] is still valid. Namely, the non-
periodicity of the sequence should make slide attacks [11, 12] irrelevant. The
particular structure of this sequence also has some similarities with the one of
GOST, of which the vulnerability against slide attacks is examined in [12]. None
of the attacks presented in [12] seems to be applicable to our cipher.

Related-key attacks. The first related-key attack has been described in [5].
It is the related-key counterpart of the slide attack. Such an attack is applicable
when a round key Ki is computed from the previous round key Ki−1 using
a function f which is always the same: Ki = f(Ki−1). However in the case of
SEAn,b, a round constant that changes for each key round is used, which prevents
this attack. Another type of related-key attack is the differential related-key
attack [23, 24]. The non-linearity of the SEAn,b key schedule should prevent it.
Moreover, note that the improvement of the differential related-key attack over
classical differential cryptanalysis usually results from the fact that choosing a
given round key difference allows to “counter” the effect of the diffusion layer
on the differential characteristic; a typical example is the attack on 3-WAY [24].
As the security of SEAn,b against differential cryptanalysis results from its large
number of rounds rather than from its diffusion, this effect is not relevant here.

Complementation properties. The DES has the following complementation
property: if P

K→ C denotes the fact that encryption of P under key K gives

ciphertext C, then: P
K−→ C ⇐⇒ P

K−→ C. The non-linear key scheduling and
the presence of carry propagations in the actual SEAn,b algorithm prevents this
property. We are not aware of any other similar structural feature in the design.

Algebraic attacks. Algebraic attacks intend to exploit the simple algebraic
structure of a block cipher. For example, certain block ciphers can be written
as an overdefined system of quadratic equations. Reference [13] argues that a
method called XSL might provide a way to effectively solve this type of equa-
tions and recover the key from a few plaintext-ciphertext pairs.

Clearly, SEAn,b has a simple algebraic structure, as it is based on a 3-bit sub-
stitution box. Therefore, if such an attack practically applies to a cipher like
Serpent [1], it is likely applicable to one of the versions of our routines. As the
complexity of XSL is supposedly polynomial in the plaintext size and number of
rounds, it is specially true when those values increase. However, as the criteria
for these techniques to be successful are presently speculated [9], we did not
consider them in our design.



3.3 Suggested number of rounds

From the previous descriptions, the minimum required number of rounds to
provide security against known attacks would be 3n

4 + 2 · (nb + bb/2c). This
roughly corresponds to the number of rounds to resist linear/differential attacks
plus twice the number of rounds to obtain complete diffusion (to prevent both
structural attacks and outer rounds improvements of statistical attacks). A more
conservative approach (applied in most present block ciphers) would be to take
a large security margin, e.g. by doubling this number of rounds4. nr has to be
odd: we add one if it is even. We also assume a minimum word size b ≥ 8 bits.

4 Performance analysis

SEAn,b is targeted for being implemented on low-cost processors, with little code
size and a small instruction set. However, SEAn,b’s simple structure makes it
easy to implement on any processor. In appendix, we propose a pseudo-assembly
code of an encryption/decryption design with “on the fly” key scheduling. The
implementation objectives were, in decreasing order of importance: (1) low RAM
and registers usage, (2) low code size and (3) speed. It is based on the following
(very) reduced instruction set (assuming 2-operand instructions only):

– Arithmetic and logic operators: ∨,∧,⊕, ¢, ≫, ≪.
– Branch instructions: goto, subroutine call and return.
– Comparison, load RAM in register, store register in RAM.

According to the code in appendix, the performances can be roughly estimated as
follows. First, the combined number of RAM words and registers equals 5nb +3.
Then, the code size and implementation time (both in expressed in ops.) is
evaluated by summing the values given in appendix. For the code size, it di-
rectly yields 31nb + 36 ops. For the implementation time, the round and key
round respectively require 12nb + 11 ops. and 10nb + 11 ops. It yields a total of
(nr − 1) × (12nb + 11 + 10nb + 11 + 7) + (12nb + 11) + 8nb + 7. These values
are summarized in Table 1. Remark that, due to the particular structure of the

# ram # regs. code size (ops.) implementation time (ops.)

SEAn,b 4nb nb + 3 31nb+36 (nr − 1)× (22nb + 29) + 20nb + 18

Table 1. Performance evaluation of SEAn,b (encryption + decryption).

key scheduling, we do not need to keep the master key in memory as, at the
end of an encryption/decryption, we have Knr−1 = K0. Remark also that this
implementation uses a low number of registers, namely nb + 3. However, if more
registers are available, they can be traded for RAM words, which will result in
lower code size and faster implementation.

4 Note that the additional non-linearity provided by the modular addition also provides
a security margin, under-estimated in our predictions.



For illustration purposes, we implemented SEAn,b on Atmel AVR ATtiny [3]
and ARM [2] microprocessors. The Atmel ATtiny represents a typical target
for such a low-cost encryption routine. We chose the ARM platform in order to
provide rough comparisons between SEAn,b and the AES Rijndael.

Algorithm E/D Device # ram # regs. code # clock # cycles ×
size cycles code size

SEA96,8 yes Atmel ATtiny 1 32 386 17 745 6849.103

SEA192,32 yes ARM (risc-32) 6 12 420 27 059 11 364.103

Rijndael [19] no ARM (risc-32) 16 12 1404 2889 4056.103

SEA128,32 yes ARM (risc-32) 6 12 280 18 039 5050.103

Table 2. Comparisons: the code size is expressed in bytes. The results of
SEA128,32 where obtained by multiplying the code size and number of cycles
of SEA192,32 by 2/3, since 128 is not a multiple of 6.

While direct comparisons are made difficult by their high dependencies on the
target devices, the following general comments can be made:

– SEAn,b designs combine encryption and decryption more efficiently than
most other encryption algorithms. In particular, key agility in decryption is
usually not possible (e.g. for the AES Rijndael).

– The combined number of RAM words and registers of SEAn,b implementa-
tions (i.e. 5nb + 3) is generally lower than for other block ciphers.

– The code size of SEAn,b is generally lower than for other block ciphers im-
plemented on similar platforms.

The flexibility of SEAn,b also makes it less sensitive to the choice of a proces-
sor than fixed-sized algorithms, although it is obvious that large buses improve
efficiency. The drawback of these limited resources is in the number of cycles
required for the encryption (i.e. SEAn,b trades space for time, which may be rel-
evant due to present processors speeds). Looking at the code size - cycles product,
the efficiency of SEAn,b remains similar to the one of Rijndael (encryption only)
that is well known for its efficient smart cards implementations.

5 Conclusion

SEAn,b is a scalable encryption algorithm targeted for small embedded appli-
cations. The plaintext size n, key size n and processor (or word) size b are pa-
rameters of the design. The structure of SEAn,b allows provable security against
linear/differential attacks and a fast evaluation of the cipher efficiency on any
RISC machine. The typical performances of SEAn,b (encryption + decryption)
for present key sizes and processors (e.g. 128-bit key, 1 Mhz 8-bit RISC) are
in the range of an encryption/decryption in a few milliseconds, using a few
hundreds bytes of ROM. One additional advantage of the design is its extreme
simplicity. Based on the pseudo code provided in this paper, it is expected that
the implementation of the cipher in assembly can be done within a few hours.
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Pseudo-assembly code: # ram # regs. # ops.

% Init
L0, R0, KL0, KR0 stored in RAM; 4nb

Set i = 1; 1
Set E/D; 1

% Subroutines (including return):
S: reg ← S(reg); nb + 1 3nb+1
r: reg ← r(reg); nb nb + 1

sw: switch KLi, KRi; 2 4nb + 1

Round:
reg ← Ri; nb nb

if i ≤ dnr/2e 1
goto a: 1

reg ← reg ¢ KLi; nb + 1 2nb

goto b: 1
a: reg ← reg ¢ KRi; nb + 1 2nb

b: call S; 1
call r; 1
if E/D=1; 1

goto c: 1
reg ← reg ⊕ Li; nb + 1 2nb

goto d: 1
c: reg ← reg ⊕ R(Li); nb + 1 2nb

d: Li+1 ← Ri; 1 2nb

if E/D=1; 1
goto e: 1

Ri+1 ← R−1(reg); nb nb

goto f: 1
e: Ri+1 ← reg; nb nb

f: return; 1

Key round:
reg ← KRi; nb nb

if i < dnr/2e 1
goto g: 1

temp ← nr − i; 1 2
reg ← reg ¢ temp; nb + 1 1
goto h: 1

g: reg ← reg ¢ i; nb 1
h: call S; 1

call r; 1
reg ← R(reg)⊕KLi; nb + 1 2nb + 1
KLi+1 ← KRi; 1 2nb

KRi+1 ← reg; nb nb

return; 1

% Total:
j: call round; 1

if i 6= dnr/2e 1
goto k: 1

call sw; 1
k: if i = nr 1

goto end: 1
call key round; 1
i = i + 1; 1
goto j: 1

end: call sw; 1
switch Li, Ri; 2 4nb
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