Mutual Authentication Protocol
for Low-cost RFID

Jeongkyu Yang1, Jaemin Park2, Hyunrok Lee2, Kui Ren3, Kwangjo Kim2

1Korea Minting and Security Printing Corporation (KOMSCO)
2Information and Communication University (ICU)
3Worcester Polytechnic Institute (WPI)
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Preliminaries</td>
</tr>
<tr>
<td>3. Proposed Scheme</td>
</tr>
<tr>
<td>4. Correctness</td>
</tr>
<tr>
<td>5. Security & Performance Analysis</td>
</tr>
<tr>
<td>6. Comparison</td>
</tr>
<tr>
<td>7. Conclusion</td>
</tr>
</tbody>
</table>
1. Introduction (1/4)

- Typical RFID System

- Characteristics
 - ISO (Int. Standard), EPC (De-facto Standard)
 - Air interface – 13.56 MHz, 915 MHz, etc.
 - Asymmetric communication channel
 - Collision avoidance IDs, Lock & Un-lock Mechanism, Pwd. Mgt.
 - Tag cost
 - To 5-cents tag, the IC cost < 2 cents
1. Introduction (2/4)

- Leakage of personal belongs data
 - Leak data regarding belongings without awareness of user.

- Illegal ID tracking
 - Monitor tag owners activities.

- Attacks
 - Eavesdropping
 - Man-in-the-middle attack (Impersonation, Spoofing)
 - Replay attack
 - Data loss (DoS, Message hijacking)
 - Forgery (Decoy Tag, etc.)
 - Physical attack
1. Introduction (3/4)

- **RFID authentication**

- **Low-cost RFID system environment**
 - Light-weight primitives

- **Privacy protection for the tag bearers**
 - Data privacy & location privacy must be guaranteed.

- **Security measure**
 - Mutual authentication is needed.
Secure authentication protocol for low-cost RFID system

- Using a rewritable memory like EEPROM, hash in tags

- Meet low-cost RFID environment
- Guarantee privacy for tag bearers
- Satisfy confidentiality, anonymity, and integrity
- Robust against attacks
2. Preliminaries (1/4)

- One-way hash function
 - Constrained resources of a tag
 - # of gates is 7.5~15 K, 100-bit EPC chip requires 5~10 K
 - # of gates available for security < 2.5~5 K
 - Hash implementation

<table>
<thead>
<tr>
<th>Design</th>
<th>Dynamic Power μW</th>
<th>Leakage Power μW</th>
<th>Circuit Area gates</th>
<th>Maximum Delay ns</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH-64</td>
<td>452.3 100</td>
<td>9.36 100</td>
<td>1701 100</td>
<td>1.35 1.0</td>
<td></td>
</tr>
<tr>
<td>WH-32</td>
<td>217.5 48</td>
<td>4.81 51</td>
<td>873 51</td>
<td>1.31 1.0</td>
<td></td>
</tr>
<tr>
<td>WH-16</td>
<td>126.2 28</td>
<td>2.32 25</td>
<td>460 27</td>
<td>0.76 1.8</td>
<td></td>
</tr>
</tbody>
</table>
2. Preliminaries (2/4)

- Hash-lock Scheme (*Weis et al., SPC 2003. [14]*)

- **B. Server**

- Reader

- **Tag** (hash)

- 1. Query
- 2. metaID
- 3. metaID
- 4. (key, ID)
- 5. key
- 6. ID

- Secure Channel
- Insecure Channel

- metaID = H(key), where H is a hash function

- The **metaID** itself is constant and will be the target of tracking.
2. Preliminaries (3/4)

Extended Hash-lock Scheme (Weis et al., SPC 2003. [14])

- **B. Server**
 - 1. Query
 - 3. Get all IDs
 - 4. $ID_1, ID_2, ..., ID_n$

- **Reader**
 - 2. $r.h(ID_k || r)$

- **Tag**
 - (hash, RNG)
 - 5. ID_k

- **Secure Channel**
- **Insecure Channel**

- r is generated by RNG of tag

- ID is randomized, but cannot prevent man-in-the-middle attack.
- Implementation issues on **RNG** for each tag.
2. Preliminaries (4/4)

- Hash-based Varying Identifier (*Herici et al., PerSec’04. [4]*)

- **B. Server (RNG)**
 - 3. $h(ID), h(TID \oplus ID), \Delta TID$
 - 4. $R, h(R \oplus TID \oplus ID)$

- **Reader**
 - 2. $h(ID), h(TID \oplus ID), \Delta TID$
 - 5. $R, h(R \oplus TID \oplus ID)$

- **Tag (hash)**
 - 1. Query
 - 1. Query

HID, ID, TID, LST, AE, DATA

Insecure Channel

Secure Channel

- ID is randomized, but cannot prevent man-in-the-middle attack.
- Tag anonymity cannot be guaranteed until the next session.
3. Proposed Scheme (1/5)

- **Notations**

 - T: RF tag, or transponder.
 - R: RF tag reader, or transceiver.
 - B: Back-end server, it has a database.
 - D: A database of B.
 - C: Chip serial number that is embedded into T during manufacturing.
 - $E_k()$: Symmetric-key cryptosystem based encryption function with the secret key, k.
 - $D_k()$: Symmetric-key cryptosystem based decryption function with the secret key, k.
 - $h()$: One-way hash function.
 - $h_k()$: Keyed hash function with the secret key k.
 - ID: Temporary identification value of T, it is used to make the shared secret k_2 randomized.
 - ID': Temporary value to be used to make the shared secret k_1 randomized.
 - k: Secret key shared between R and B.
 - k_1: Shared random secret between T and B.
 - k_2: Shared random secret between T and B.
 - RNG: Random Number Generator.
 - r: Random number generated by RNG of R.
 - S: Keyed one-way hash value of $h_k(r)$.
 - \oplus: Exclusive-or (XOR) function.
 - \equiv: Verification operator to check whether the left side are valid for the right side or not.
 - \leftarrow: Update operator from the right side to the left side.
 - HID: A field for the temporary identification value of T and used as a primary index.
 - T_1: A field for the shared random secret, k_1.
 - T_2: A field for the shared random secret, k_2.
 - AE: A field for the pointer linking a pair of records each other to counteract for the data loss.
 - CN: A field for the chip serial number, C, of T.
 - $DATA$: A field for all other application related data of T.
3. Proposed Scheme (2/5)

- Assumptions
 - **Hash Function**
 - Has desirable security like 1st, 2nd preimage resistance, and collision avoidance.
 - **Tag** \(T \)
 - Has a hash function, XOR gate, and the capability to keep state during a single session.
 - Is passive and has re-writable memory like EPC class 2 of EPC Global.
 - **Reader** \(R \)
 - Is not a TTP and has enough computational power.
 - Has a RNG and a keyed one-way hash function with symmetric key between the reader and the back-end server.
 - **Back-end Server** \(B \)
 - Has sufficient capability to manage symmetric-key cryptosystem.
 - **Insecure channel between reader and back-end server**
3. Proposed Scheme (3/5)

- Attacking Model
 - **Man-in-the-middle attack**
 » The attacker can impersonate as a legitimate R and get the information from T. He can impersonate as the legitimate T responding to R.

 - **Replay attack**
 » The attackers eavesdrop the response message from T, and can retransmit the message to the legitimate R.

 - **Forgery**
 » The simple copy of T information by eavesdropping.

 - **Data loss**
 » DoS, power interruption, and hijacking, etc.

 - **Do not consider the physical attack**
3. Proposed Scheme (4/5)

- **Security Requirement**
 - **Data confidentiality**
 » To prevent the data privacy of T from the insecure data
 - **Tag anonymity**
 » To prevent the location privacy of tag bearers
 - **Data integrity**
 » Data integrity between T and B against data loss
 » Linkage between the authentication info. of T and T itself ➔ Simple forgery is prevented
 - **Detection for an illegitimate R**
 » Replay attack and Man-in-the-middle attack are prevented.
3. Proposed Scheme (5/5)

Our Protocol

\[(h(), h_k(), \oplus) \]

\[k_1, k_2, C \]

\[RTB \]

\[k_1 \]

\[\oplus \]

\[ID' \]

\[k_2 \]

\[\oplus \]

\[ID \]

Verify \(S = ? h_k(r) \)
(abort if not)
then
Retrieve \(<k_1, k_2, C> \)
from \(<T_1, T_2, CN> \in D \)
Verify \(ID = ? h(k_1 \oplus h_k(r) \oplus C) \)
(abort if not)
then \(ID' = h(k_2) \)

\[k_1 \leftarrow k_1 \oplus ID' \]
\[k_2 \leftarrow k_2 \oplus ID \]

\[(RNG, h_k()) \]

\[r, S = h_k(r) \]

query with \(S \)

\[ID \]

1) challenge

2) T-R response

3) R-B response

4) R-B reply

5) R-T reply

\[ID', E_{h_k(S)}(DATA) \]

\[D_{h_k(S)}(DATA) \]

Insecure Channel

Insecure Channel

\[ID = h(k_1 \oplus S \oplus C) \]

\[k_1, k_2, C \]

\[T \]

\[h() \]

\[h() \]

\[h() \]

\[(h(), \oplus) \]

\[ID \]

\[k_1 \]

\[\oplus \]

\[k_2 \]

\[ID \]

Verify \(ID' = ? h(k_2) \)
(abort if not)
then
\[k_1 \leftarrow k_1 \oplus ID' \]
\[k_2 \leftarrow k_2 \oplus ID \]
4. Correctness (1/4)

- **GNY Logic [20]**

- **Correctness Proof of Our Scheme**
 - We applied the reasoning process of GNY logic to prove correctness of our protocol.
 - Correctness of proof goals means two entities, T and B, share two secrets for every session and those secrets are fresh.
 - Besides, two entities, R and B, shared the keys for providing reader authentication and secure message exchange.
 - The proof goals are accomplished by the verification steps.
4. Correctness (2/4)

- **Used GNY Constructs**

<table>
<thead>
<tr>
<th>(X, Y)</th>
<th>Concatenation of formulae</th>
<th>${X}^K \cdot {X}^{K^{-1}}$</th>
<th>Symmetric encryption and decryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \triangleright X$</td>
<td>P possesses or is capable of possessing formula, X</td>
<td>$P \triangleright X$</td>
<td>P conveyed X.</td>
</tr>
<tr>
<td>$P \bowtie X$</td>
<td>P believes X.</td>
<td>$#(X)$</td>
<td>The formula X is fresh. X has not been before the current run of the protocol.</td>
</tr>
<tr>
<td>$P \lhd X$</td>
<td>P is told X. P has a received a message containing X and P can read and repeat X.</td>
<td>$P \lhd X$</td>
<td>P is told formula X, not conveyed by P during the current protocol run.</td>
</tr>
<tr>
<td>$X \sim C$</td>
<td>Message X has the extension C. The precondition for X being conveyed is C.</td>
<td>$P \Rightarrow X$</td>
<td>P has jurisdiction over X. The principal P is an authority on X.</td>
</tr>
<tr>
<td>ϕX</td>
<td>Formula X is recognizable</td>
<td>$P \leftrightarrow Q$</td>
<td>K is a suitable secret for P and Q. It may be used as a key or as a proof of identity.</td>
</tr>
<tr>
<td>$P \overset{K}{\Rightarrow} Q$</td>
<td>K is a secret known only to P and Q, and possibly to principals trusted by them. Only P and Q may use X to prove their identities to one another. Often, K is fresh as well as secret.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Correctness (3/4)

- **Proof Goals**

 1. $B \equiv T \vdash H(K1^i \oplus H_K(N_R))$
 2. $T \equiv B \vdash H(K2^i)$
 3. $R \equiv R \overset{K}{\leftarrow} B$
 4. $B \equiv R \overset{K}{\rightarrow} B$
 5. $R \equiv R \overset{K_{RB}}{\leftarrow} B$
 6. $B \equiv R \overset{K_{RB}}{\rightarrow} B$

- (1) and (2) for shared secrets between tag and back-end server
 - (1) for the message from T
 - (2) for the message from B

- (3-6) for shared keys between reader and back-end server
 - (3) and (4) for a keyed hash function
 - (4) and (6) for message encryption and decryption
4. Correctness (4/4)

- Verification

Message 5 $T \triangleleft \star (H(K2^i)) \leadsto T \ni K2^i$

32) The extension to the message, $T \ni K2^i$, is valid because it holds when the message is sent as is evident from the initial assumptions, A5.

33) $T \triangleleft H(K2^i)$: Applying T1, Being-Told Rule.

34) $T \ni H(K2^i)$: Applying P1, Possession Rule.

35) $\frac{T \equiv \sharp(K2^i) \wedge T \ni H(K2^i)}{T \equiv \sharp(H(K2^i))}$: Applying A7, and applying F10, Freshness Rule.

36) $\frac{T \ni \sharp(H(K2^i)) \wedge T \ni K2^i \wedge T \equiv T \ni K2^i \rightarrow B \wedge T \equiv \sharp(H(K2^i))}{T \ni B \sim \sharp(H(K2^i))}$: Applying A5, A9, V33, and applying I3, Message Interpretation Rule.

37) $\frac{T \equiv \sharp(H(K2^i)) \wedge T \ni B \sim \sharp(H(K2^i))}{T \equiv B \sim \sharp(H(K2^i))}$: Applying V35, and applying F1, Freshness Rule. This is the proof for P2, $T \ni B \sim \sharp(H(K2^i))$ applying A10, V21, and the freshness $\sharp(H(K2^i), R_{RB})$ is straightforward, and applying I1, Message Interpretation Rule.

29) $R \equiv B \sim R \rightarrow_{K_{RB}} B$: Applying I7, Message Interpretation Rule.

30) $\frac{R \equiv B \sim R \rightarrow_{K_{RB}} B \wedge B \equiv R \rightarrow_{K_{RB}} B}{R \equiv R \rightarrow_{K_{RB}} B}$: Applying A20, and applying J1, Jurisdiction Rule. This is the proof for P5, $R \equiv R \rightarrow_{K_{RB}} B$.

31) We omit the proof for P6 since, for the encrypted message with the key, K_{RB}, there in no further message exchange after this step. That is, the encrypted message of the entity, B, is replied to R and decrypted by R. Thus, the proof is not needed at this moment.
5. Analysis (1/3)

Security Analysis

- **Data confidentiality**
 - On data privacy of tag bearers
 - T does store no privacy information of tag bearers.
 - All messages from T is hashed, so eavesdropping is meaningless.
 - On Application data
 - $E_{hk(S)}(DATA)$ by B, and $D_{hk(S)}(DATA)$ by R
 - $h_k(S)$: randomly created shared key between R and B

- **Tag anonymity**
 - All outputs of T are anonymous for every read attempt with r of R.
 - Freshness of k_1 and k_2 is guaranteed for each session.
 - Location privacy is protected.
5. Analysis (2/3)

- Security Analysis (cont.)

 Data Integrity

 - Synchronization between T and B by mutual authentication
 - Providing data recovery using a pair of DB records of B
 - Providing Linkage between the authentication info. of T and T itself using the chip S/N

 Availability

 - Man-in-the-middle attack prevention ➔ **Step 3, and step 5**
 - Unauthorized reader detection ➔ **From step 1 to step 3**
 - Replay attack prevention ➔ **Step 3 for B, and step 5 for T**
 - Forgery resistance ➔ **C of ID by B**
 - Data recovery ➔ **Step 4**
5. Analysis (3/3)

- **Performance Analysis**
 - **Computational Overhead**
 - T needs only 2 hash calculation
 - Encryption & decryption for insecure channel B needs $2n$ of hash calculation, when n is number of T
 - **Storage Overhead**
 - T needs only $2^{1/2}L$ bits, when $h, h_k : \{0, 1\}^* \rightarrow \{0, 1\}^{1/2L}$ and $r \in_U \{0, 1\}^L$
 - **Communication Overhead**
 - Message exchange: total – 5, between T and R - 2
 - **Cost Overhead**
 - 1.7 K-gate/hash + several hundreds gates/XOR < 2.5 K ~ 5 K-gate
 - Feasible to 5 cents tag
6. Comparison (1/2)

Security Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User data confidentiality</td>
<td>×</td>
<td>Δ</td>
<td>Δ</td>
<td>○</td>
</tr>
<tr>
<td>Tag anonymity</td>
<td>×</td>
<td>Δ</td>
<td>Δ</td>
<td>○</td>
</tr>
<tr>
<td>Data integrity</td>
<td>Δ</td>
<td>Δ</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Mutual authentication</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>○</td>
</tr>
<tr>
<td>Reader authentication</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Man-in-the-middle attack prevention</td>
<td>Δ</td>
<td>Δ</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Replay attack prevention</td>
<td>Δ</td>
<td>Δ</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Forgery Resistance</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Data Recovery</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

†† Notation

- ○ satisfied
- Δ partially satisfied
- × not satisfied
6. Comparison (2/2)

Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Hash Operation</td>
<td>T</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>n</td>
<td>3</td>
<td>$2n$</td>
<td></td>
</tr>
<tr>
<td>No. of Keyed Hash Operation</td>
<td>R</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td>No. of RNG Operation</td>
<td>T</td>
<td>$-$</td>
<td>1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
<td>$-$</td>
</tr>
<tr>
<td>No. of Encryption</td>
<td>B</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td>No. of Decryption</td>
<td>R</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td>Number of Authentication Steps</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Required Memory Size</td>
<td>T</td>
<td>$1\frac{1}{2}L$</td>
<td>$1L$</td>
<td>$3L$</td>
<td>$2\frac{1}{2}L$</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$1\frac{1}{2}L$</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>$2\frac{1}{2}L$</td>
<td>$1\frac{1}{2}L$</td>
<td>$9L$</td>
<td>$8L$</td>
</tr>
</tbody>
</table>

†† Notation $-$ not required

- L bits is assumed for the sizes of all components between protocols
- The outputs of hash function is $\frac{1}{2}L$ bits
- Comparison for $DATA$ is excluded since its size is depended on application.
7. Conclusion

- RFID will be important for the future ubiquitous society. However, RFID systems are vulnerable to many security risks and imply potential privacy problems.

- Different from previous results, our protocol is firstly proposed on the assumption that the communication channel between reader and back-end server is insecure and reader is not TTP.

- As based on strong mutual authentication between entities, our protocol is robust enough for security vulnerabilities and privacy problems, and is very feasible for low-cost RFID environment since tag only has a hash function with small memory size.
Thanks for your attention!

Q&A
3. Proposed Scheme (5/5)

Our Protocol

B

(h(), h_k(), ⊕)

R

(RNG, h_k())

T

(h(), ⊕)

\[k_1, k_2, C \]

\[k_{1}, k_{2}, C \]

\[k_1 \leftarrow k_1 \oplus ID' \]

\[k_2 \leftarrow k_2 \oplus ID \]

Verify \(S =? h_k(r) \)

(abort if not)

then

Retrieve \(<k_1, k_2, C> \)

from \(<T_1, T_2, CN> \in D \)

Verify \(ID =? h(k_1 \oplus h_k(r) \oplus C) \)

(abort if not)

then \(ID' = h(k_2) \)

\[h \]

\[r, S = h_k(r) \]

query with \(S \)

1) challenge

ID, S, r

2) T-R response

ID

3) R-B response

ID', E_{h_k(S)}(DATA)

4) R-B reply

ID, S, r

5) R-T reply

\[D_{h_k(S)}(DATA) \]

Insecure Channel

Insecure Channel

\[ID = h(k_1 \oplus S \oplus C) \]

Verify \(ID' =? h(k_2) \)

(abort if not)

then

\[k_1 \leftarrow k_1 \oplus ID' \]

\[k_2 \leftarrow k_2 \oplus ID \]